Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Brain ; 144(7): 2186-2198, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33693619

RESUMEN

Co-pathologies play an important role in the expression of the Alzheimer's disease clinical phenotype and may influence treatment efficacy. Early-onset Alzheimer's disease, defined as manifesting before age 65, is viewed as a relatively pure form of Alzheimer's disease with a more homogeneous neuropathological substrate. We sought to compare the frequency of common neuropathological diagnoses in a consecutive autopsy series of 96 patients with early-onset Alzheimer's disease (median age of onset = 55 years, 44 females) and 48 with late-onset Alzheimer's disease (median age of onset = 73 years, 14 females). The UCSF Neurodegenerative Disease Brain Bank database was reviewed to identify patients with a primary pathological diagnosis of Alzheimer's disease. Prevalence and stage of Lewy body disease, limbic age-related TDP-43 encephalopathy (LATE), argyrophilic grain disease, hippocampal sclerosis, cerebral amyloid angiopathy, and vascular brain injury were compared between the two cohorts. We found at least one non-Alzheimer's disease pathological diagnosis in 98% of patients with early-onset Alzheimer's disease (versus 100% of late onset), and the number of comorbid diagnoses per patient was lower in early-onset than in late-onset Alzheimer's disease (median = 2 versus 3, Mann-Whitney Z = 3.00, P = 0.002). Lewy body disease and cerebral amyloid angiopathy were common in both early and late onset Alzheimer's disease (cerebral amyloid angiopathy: 86% versus 79%, Fisher exact P = 0.33; Lewy body disease: 49% versus 42%, P = 0.48, respectively), although amygdala-predominant Lewy body disease was more common in early than late onset Alzheimer's disease (22% versus 6%, P = 0.02). In contrast, LATE (35% versus 8%, P < 0.001), hippocampal sclerosis (15% versus 3%, P = 0.02), argyrophilic grain disease (58% versus 41%, P = 0.052), and vascular brain injury (65% versus 39%, P = 0.004) were more common in late than in early onset Alzheimer's disease, respectively. The number of co-pathologies predicted worse cognitive performance at the time of death on Mini-Mental State Examination [1.4 points/pathology (95% confidence interval, CI -2.5 to -0.2) and Clinical Dementia Rating-Sum of Boxes (1.15 point/pathology, 95% CI 0.45 to 1.84)], across early and late onset cohorts. The effect of sex on the number of co-pathologies was not significant (P = 0.17). Prevalence of at least one APOE ε4 allele was similar across the two cohorts (52% and 54%) and was associated with a greater number of co-pathologies (+0.40, 95% CI 0.01 to 0.79, P = 0.047), independent of age of symptom onset, sex, and disease duration. Females showed higher density of neurofibrillary tangles compared to males, controlling for age of onset, APOE ε4, and disease duration. Our findings suggest that non-Alzheimer's disease pathological diagnoses play an important role in the clinical phenotype of early onset Alzheimer's disease with potentially significant implications for clinical practice and clinical trials design.


Asunto(s)
Enfermedad de Alzheimer/epidemiología , Encefalopatías/epidemiología , Edad de Inicio , Anciano , Enfermedad de Alzheimer/patología , Comorbilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad
2.
Am J Phys Anthropol ; 170(3): 351-360, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31260092

RESUMEN

OBJECTIVES: The serotonergic system is involved in the regulation of socio-emotional behavior and heavily innervates the amygdala, a key structure of social brain circuitry. We quantified serotonergic axon density of the four major nuclei of the amygdala in humans, and examined our results in light of previously published data sets in chimpanzees and bonobos. MATERIALS AND METHODS: Formalin-fixed postmortem tissue sections of the amygdala from six humans were stained for serotonin transporter (SERT) utilizing immunohistochemistry. SERT-immunoreactive (ir) axon fiber density in the lateral, basal, accessory basal, and central nuclei of the amygdala was quantified using unbiased stereology. Nonparametric statistical analyses were employed to examine differences in SERT-ir axon density between amygdaloid nuclei within humans, as well as differences between humans and previously published data in chimpanzees and bonobos. RESULTS: Humans displayed a unique pattern of serotonergic innervation of the amygdala, and SERT-ir axon density was significantly greater in the central nucleus compared to the lateral nucleus. SERT-ir axon density was significantly greater in humans compared to chimpanzees in the basal, accessory basal, and central nuclei. SERT-ir axon density was greater in humans compared to bonobos in the accessory basal and central nuclei. CONCLUSIONS: The human pattern of SERT-ir axon distribution in the amygdala complements the redistribution of neurons in the amygdala in human evolution. The present findings suggest that differential serotonergic modulation of cognitive and autonomic pathways in the amygdala in humans, bonobos, and chimpanzees may contribute to species-level differences in social behavior.


Asunto(s)
Amígdala del Cerebelo/química , Amígdala del Cerebelo/citología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/análisis , Adulto , Anciano , Antropología Física , Evolución Biológica , Femenino , Humanos , Inmunohistoquímica , Masculino , Neuronas/química , Neuronas/citología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Conducta Social , Adulto Joven
3.
Brain Struct Funct ; 225(3): 1019-1032, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32189114

RESUMEN

Williams syndrome (WS) is a rare neurodevelopmental disorder caused by the hemideletion of approximately 25-28 genes at 7q11.23. Its unusual social and cognitive phenotype is most strikingly characterized by the disinhibition of social behavior, in addition to reduced global IQ, with a relative sparing of language ability. Hypersociality and increased social approach behavior in WS may represent a unique inability to inhibit responses to specific social stimuli, which is likely associated with abnormalities of frontostriatal circuitry. The striatum is characterized by a diversity of interneuron subtypes, including inhibitory parvalbumin-positive interneurons (PV+) and excitatory cholinergic interneurons (Ch+). Animal model research has identified an important role for these specialized cells in regulating social approach behavior. Previous research in humans identified a depletion of interneuron subtypes associated with neuropsychiatric disorders. Here, we examined the density of PV+ and Ch+ interneurons in the striatum of 13 WS and neurotypical (NT) subjects. We found a significant reduction in the density of Ch+ interneurons in the medial caudate nucleus and nucleus accumbens, important regions receiving cortical afferents from the orbitofrontal and ventromedial prefrontal cortex, and circuitry involved in language and reward systems. No significant difference in the distribution of PV+ interneurons was found. The pattern of decreased Ch+ interneuron densities in WS differs from patterns of interneuron depletion found in other disorders.


Asunto(s)
Neuronas Colinérgicas/patología , Cuerpo Estriado/patología , Interneuronas/patología , Síndrome de Williams/patología , Adolescente , Adulto , Anciano , Colina O-Acetiltransferasa/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Parvalbúminas/análisis , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA