Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Physiol ; 599(3): 911-925, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33103241

RESUMEN

KEY POINTS: The results of the present study establish the temporal pattern of age-related vascular dysfunction across the adult lifespan in sedentary mice consuming a non-Western diet, and the underlying mechanisms The results demonstrate that consuming a Western diet accelerates and exacerbates vascular ageing across the lifespan in sedentary mice They also show that lifelong voluntary aerobic exercise has remarkable protective effects on vascular function throughout the lifespan, in the setting of ageing alone, as well as ageing compounded by Western diet consumption Overall, the results indicate that amelioration of mitochondrial oxidative stress and inflammation are key mechanisms underlying the voluntary aerobic exercise-associated preservation of vascular function across the lifespan in both the presence and absence of a Western dietary pattern ABSTRACT: Advancing age is the major risk factor for cardiovascular diseases, driven largely by vascular endothelial dysfunction (impaired endothelium-dependent dilatation, EDD) and aortic stiffening (increased aortic pulse wave velocity, aPWV). In humans, vascular ageing occurs in the presence of differences in diet and physical activity, but the interactive effects of these factors are unknown. We assessed carotid artery EDD and aPWV across the lifespan in mice consuming standard (normal) low-fat chow (NC) or a high-fat/high-sucrose Western diet (WD) in the absence (sedentary, SED) or presence (voluntary wheel running, VWR) of aerobic exercise. Ageing impaired nitric oxide-mediated EDD (peak EDD 88 ± 12% 6 months P = 0.003 vs. 59 ± 9% 27 months NC-SED), which was accelerated by WD (60 ± 18% 6 months WD-SED). In NC mice, aPWV increased 32% with age (423 ± 13 cm/s at 24 months P < 0.001 vs. 321 ± 12 cm/s at 6 months) and absolute values were an additional ∼10% higher at any age in WD mice (P = 0.042 vs. NC-SED). Increases in aPWV with age in NC and WD mice were associated with 30-65% increases in aortic intrinsic wall stiffness (6 vs. 19-27 months, P = 0.007). Lifelong aerobic exercise prevented age- and WD-related vascular dysfunction across the lifespan, and this protection appeared to be mediated by mitigation of vascular mitochondrial oxidative stress and inflammation. Our results depict the temporal impairment of vascular function over the lifespan in mice, acceleration and exacerbation of that dysfunction with WD consumption, the remarkable protective effects of voluntary aerobic exercise, and the underlying mechanisms.


Asunto(s)
Dieta Occidental , Rigidez Vascular , Animales , Dieta Occidental/efectos adversos , Endotelio Vascular/metabolismo , Inflamación/metabolismo , Ratones , Actividad Motora , Estrés Oxidativo , Análisis de la Onda del Pulso
2.
J Physiol ; 597(9): 2361-2378, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30714619

RESUMEN

KEY POINTS: Age-related arterial dysfunction, characterized by oxidative stress- and inflammation-mediated endothelial dysfunction and arterial stiffening, is the primary risk factor for cardiovascular diseases. To investigate whether age-related changes in the gut microbiome may mediate arterial dysfunction, we suppressed gut microbiota in young and old mice with a cocktail of broad-spectrum, poorly-absorbed antibiotics in drinking water for 3-4 weeks. In old mice, antibiotic treatment reversed endothelial dysfunction and arterial stiffening and attenuated vascular oxidative stress and inflammation. To provide insight into age-related changes in gut microbiota that may underlie these observations, we show that ageing altered the abundance of microbial taxa associated with gut dysbiosis and increased plasma levels of the adverse gut-derived metabolite trimethylamine N-oxide. The results of the present study provide the first proof-of-concept evidence that the gut microbiome is an important mediator of age-related arterial dysfunction and therefore may be a promising therapeutic target for preserving arterial function with ageing, thereby reducing the risk of cardiovascular diseases. ABSTRACT: Oxidative stress-mediated arterial dysfunction (e.g. endothelial dysfunction and large elastic artery stiffening) is the primary mechanism driving age-related cardiovascular diseases. Accumulating evidence suggests the gut microbiome modulates host physiology because dysregulation ('gut dysbiosis') has systemic consequences, including promotion of oxidative stress. The present study aimed to determine whether the gut microbiome modulates arterial function with ageing. We measured arterial function in young and older mice after 3-4 weeks of treatment with broad-spectrum, poorly-absorbed antibiotics to suppress the gut microbiome. To identify potential mechanistic links between the gut microbiome and age-related arterial dysfunction, we sequenced microbiota from young and older mice and measured plasma levels of the adverse gut-derived metabolite trimethylamine N-oxide (TMAO). In old mice, antibiotics reversed endothelial dysfunction [area-under-the-curve carotid artery dilatation to acetylcholine in young: 345 ± 16 AU vs. old control (OC): 220 ± 34 AU, P < 0.01; vs. old antibiotic-treated (OA): 334 ± 15 AU; P < 0.01 vs. OC] and arterial stiffening (aortic pulse wave velocity in young: 3.62 ± 0.15 m  s-1  vs. OC: 4.43 ± 0.38 m  s-1 ; vs. OA: 3.52 ± 0.35 m  s-1 ; P = 0.03). These improvements were accompanied by lower oxidative stress and greater antioxidant enzyme expression. Ageing altered the abundance of gut microbial taxa associated with gut dysbiosis. Lastly, plasma TMAO was higher with ageing (young: 2.6 ± 0.4 µmol  L-1   vs. OC: 7.2 ± 2.0 µmol  L-1 ; P < 0.0001) and suppressed by antibiotic treatment (OA: 1.2 ± 0.2 µmol  L-1 ; P < 0.0001 vs. OC). The results of the present study provide the first evidence for the gut microbiome being an important mediator of age-related arterial dysfunction and oxidative stress and suggest that therapeutic strategies targeting gut microbiome health may hold promise for preserving arterial function and reducing cardiovascular risk with ageing in humans.


Asunto(s)
Envejecimiento/fisiología , Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Rigidez Vascular/efectos de los fármacos , Envejecimiento/patología , Animales , Arterias Carótidas/crecimiento & desarrollo , Arterias Carótidas/metabolismo , Arterias Carótidas/fisiología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Masculino , Metilaminas/sangre , Ratones , Ratones Endogámicos C57BL , Vasodilatación/efectos de los fármacos
3.
Semin Cutan Med Surg ; 37(2): 127-131, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30040090

RESUMEN

Immunotherapy for the treatment of advanced melanoma has become a primary treatment in the clinic. Current therapies include systemic cytokines, immune checkpoint inhibitors, and localized intratumoral therapies. Checkpoint inhibitors block natural pathways that dampen or inhibit an immune response to stimulus. These pathways include programmed cell death 1 receptor/programmed death-ligand 1 and cytotoxic T lymphocyte antigen-4. Systemic immunotherapies have proven to be effective in clinical trials both as monotherapy and in combination therapy. Oncolytic viruses are used to treat tumor locally and induce an effective immune response. Although some immune-mediated adverse events have been shown to occur with immunotherapy and may cause disease through systemic immune activation, most symptoms are mild to moderate. Overall immunotherapy in advanced melanoma has provided effective and durable responses to treat patients with advanced melanoma.


Asunto(s)
Inmunidad Celular , Factores Inmunológicos/uso terapéutico , Inmunoterapia/métodos , Melanoma/terapia , Terapia Molecular Dirigida/métodos , Neoplasias Cutáneas/terapia , Humanos , Melanoma/inmunología , Neoplasias Cutáneas/inmunología
4.
J Appl Physiol (1985) ; 124(5): 1194-1202, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074712

RESUMEN

Aortic stiffening is a major independent risk factor for cardiovascular diseases, cognitive dysfunction, and other chronic disorders of aging. Mitochondria-derived reactive oxygen species are a key source of arterial oxidative stress, which may contribute to arterial stiffening by promoting adverse structural changes-including collagen overabundance and elastin degradation-and enhancing inflammation, but the potential for mitochondria-targeted therapeutic strategies to ameliorate aortic stiffening with primary aging is unknown. We assessed aortic stiffness [pulse-wave velocity (aPWV)], ex vivo aortic intrinsic mechanical properties [elastic modulus (EM) of collagen and elastin regions], and aortic protein expression in young (~6 mo) and old (~27 mo) male C57BL/6 mice consuming normal drinking water (YC and OC) or water containing mitochondria-targeted antioxidant MitoQ (250 µM; YMQ and OMQ) for 4 wk. Both baseline and postintervention aPWV values were higher in OC vs. YC (post: 482 ± 21 vs. 420 ± 5 cm/s, P < 0.05). MitoQ had no effect in young mice but decreased aPWV in old mice (OMQ, 426 ± 20, P < 0.05 vs. OC). MitoQ did not affect age-associated increases in aortic collagen-region EM, collagen expression, or proinflammatory cytokine expression, but partially attenuated age-associated decreases in elastin region EM and elastin expression. Our results demonstrate that MitoQ reverses in vivo aortic stiffness in old mice and suggest that mitochondria-targeted antioxidants may represent a novel, promising therapeutic strategy for decreasing aortic stiffness with primary aging and, possibly, age-related clinical disorders in humans. The destiffening effects of MitoQ treatment may be at least partially mediated by attenuation/reversal of age-related aortic elastin degradation. NEW & NOTEWORTHY We show that 4 wk of treatment with the mitochondria-specific antioxidant MitoQ in mice completely reverses the age-associated elevation in aortic stiffness, assessed as aortic pulse-wave velocity. The destiffening effects of MitoQ treatment may be at least partially mediated by attenuation of age-related aortic elastin degradation. Our results suggest that mitochondria-targeted therapeutic strategies may hold promise for decreasing arterial stiffening with aging in humans, possibly decreasing the risk of many chronic age-related clinical disorders.


Asunto(s)
Antioxidantes/farmacología , Aorta/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Rigidez Vascular/efectos de los fármacos , Animales , Aorta/metabolismo , Citocinas/metabolismo , Elastina/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Análisis de la Onda del Pulso/métodos , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo , Vasodilatación/efectos de los fármacos
5.
Hypertension ; 71(6): 1056-1063, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29661838

RESUMEN

Excess reactive oxygen species production by mitochondria is a key mechanism of age-related vascular dysfunction. Our laboratory has shown that supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular endothelial function by reducing mitochondrial reactive oxygen species and ameliorates arterial stiffening in old mice, but the effects in humans are unknown. Here, we sought to translate our preclinical findings to humans and determine the safety and efficacy of MitoQ. Twenty healthy older adults (60-79 years) with impaired endothelial function (brachial artery flow-mediated dilation <6%) underwent 6 weeks of oral supplementation with MitoQ (20 mg/d) or placebo in a randomized, placebo-controlled, double-blind, crossover design study. MitoQ was well tolerated, and plasma MitoQ was higher after the treatment versus placebo period (P<0.05). Brachial artery flow-mediated dilation was 42% higher after MitoQ versus placebo (P<0.05); the improvement was associated with amelioration of mitochondrial reactive oxygen species-related suppression of endothelial function (assessed as the increase in flow-mediated dilation with acute, supratherapeutic MitoQ [160 mg] administration; n=9; P<0.05). Aortic stiffness (carotid-femoral pulse wave velocity) was lower after MitoQ versus placebo (P<0.05) in participants with elevated baseline levels (carotid-femoral pulse wave velocity >7.60 m/s; n=11). Plasma oxidized LDL (low-density lipoprotein), a marker of oxidative stress, also was lower after MitoQ versus placebo (P<0.05). Participant characteristics, endothelium-independent dilation (sublingual nitroglycerin), and circulating markers of inflammation were not different (all P>0.1). These findings in humans extend earlier preclinical observations and suggest that MitoQ and other therapeutic strategies targeting mitochondrial reactive oxygen species may hold promise for treating age-related vascular dysfunction. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02597023.


Asunto(s)
Antioxidantes/administración & dosificación , Arteria Braquial/fisiología , Endotelio Vascular/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Rigidez Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Anciano , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Endotelio Vascular/efectos de los fármacos , Femenino , Estudios de Seguimiento , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo
6.
Aging (Albany NY) ; 8(11): 2897-2914, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27875805

RESUMEN

Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12; -32.5±-10.5%) versus young (~7 mo., YC n=11; -5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running; -0.8±-2.1% and -8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise.


Asunto(s)
Envejecimiento/fisiología , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Condicionamiento Físico Animal/fisiología , Rigidez Vascular , Factores de Edad , Animales , Antioxidantes/farmacología , Arterias Carótidas/fisiopatología , Endotelio Vascular/metabolismo , Humanos , Masculino , Ratones , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno , Enfermedades Vasculares/fisiopatología , Enfermedades Vasculares/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA