Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Small ; : e2407299, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291893

RESUMEN

Polymer dielectrics are the key materials for pulsed energy storage systems, but their low energy densities greatly restrict the applications in integrated electronic devices. Herein, a unique bumpy granular interlayer consisting of gold nanoparticles (Au NPs) and polymethyksesquioxane (PMSQ) microspheres is introduced into a poly(vinylidene fluoride) (PVDF) film, forming trilayered PVDF-Au/PMSQ-PVDF films. Interestingly, the Au/PMSQ interlayer arouses a dielectric enhancement of 47% and an ultrahigh breakdown strength of 704 MV m-1, which reaches 153% of pure PVDF. It is revealed that the greatly enhanced breakdown strength originated from the Coulomb-blockade effect of Au NPs and the excellent insulating properties of PMSQ microspheres with a special molecular-scale organic-inorganic hybrid structure. Benefiting from the concurrently enhanced dielectric and breakdown performances, an outstanding energy density of 22.42 J cm-3 with an efficiency of 67.1%, which reaches 249% of that of the pure PVDF, is achieved. It is further confirmed that this design strategy is also applicable to linear dielectric polymer polyethyleneimine. The composites exhibit an energy density of 8.91 J cm-3 with a high efficiency of ≈95%. This work offers a novel and efficient strategy for concurrently enhancing the dielectric and breakdown performances of polymers toward pulsed power applications.

2.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38610453

RESUMEN

Nanozymes possess major advantages in catalysis and biosensing compared with natural nanozymes. In this study, the AuPt@BaTiO3 bimetallic alloy Schottky junction is prepared to act as oxidase mimetics, and its photo-piezoelectric effect is investigated. The synergy between the photo-piezoelectric effect and the local surface plasmon resonance enhances the directional migration and separation of photogenerated electrons, as well as hot electrons induced by the AuPt bimetallic alloy. This synergy significantly improves the oxidase-like activity. A GSH colorimetric detection platform is developed based on this fading principle. Leveraging the photo-piezoelectric effect allows for highly sensitive detection with a low detection limit (0.225 µM) and reduces the detection time from 10 min to 3 min. The high recovery rate (ranging from 99.91% to 101.8%) in actual serum detection suggests promising potential for practical applications. The development of bimetallic alloy heterojunctions presents new opportunities for creating efficient nanozymes.


Asunto(s)
Aleaciones , Colorimetría , Catálisis , Electrones , Resonancia por Plasmón de Superficie
3.
Inorg Chem ; 62(13): 5282-5291, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36943137

RESUMEN

Searching for working refrigerant materials is the key element in the design of magnetic cooling devices. Herein, we report on the thermodynamic and magnetocaloric parameters of an X1 phase oxyorthosilicate, Gd2SiO5, by field-dependent static magnetization and specific heat measurements. An overall correlation strength of |J|S2 ≈ 3.4 K is derived via the mean-field estimate, with antiferromagnetic correlations between the ferromagnetically coupled Gd-Gd layers. The magnetic entropy change -ΔSm is quite impressive, reaches 0.40 J K-1 cm-3 (58.5 J K-1 kg-1) at T = 2.7 K, with the largest adiabatic temperature change Tad = 23.2 K for a field change of 8.9 T. At T = 20 K, the lattice entropy SL is small enough compared to the magnetic entropy Sm, Sm/SL = 21.3, which warrants its potential in 2 -20 K cryocoolers with both the Stirling and Carnot cycles. Though with relatively large exchange interactions, the layered A-type spin arrangement ultimately enhances the magnetocaloric coupling, raising the possibilities of designing magnetic refrigerants with a high ratio of cooling capacity to volume.

4.
Nanotechnology ; 34(38)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37339612

RESUMEN

Infectious diseases are spreading rapidly with the flow of the world's population, and the prevention of epidemic diseases is particularly important for public and personal health. Therefore, there is an urgent need to develop a simple, efficient and non-toxic method to control the spread of bacteria and viruses. The newly developed triboelectric nanogenerator (TENG) can generate a high voltage, which inhibits bacterial reproduction. However, the output performance is the main factor limiting real-world applications of TENGs. Herein, we report a soft-contact fiber-structure TENG to avoid insufficient friction states and to improve the output, especially at a high rotation speed. Rabbit hair, carbon nanotubes, polyvinylidene difluoride film and paper all contain fiber structures that are used to guarantee soft contact between the friction layers and improve the contact state and abrasion problem. Compared with a direct-contact triboelectric nanogenerator, the outputs of this soft-contact fiber-structure TENG are improved by about 350%. Meanwhile, the open-circuit voltage can be enhanced to 3440 V, which solves the matching problems when driving high-voltage devices. A TENG-driven ultraviolet sterilization system is then developed. The bactericidal rate of this sterilization system can reach 91%, which significantly reduces the risk of disease spread. This work improves a forward-looking strategy to improve the output and service life of the TENG. It also expands the applications of self-powered TENG sterilization systems.


Asunto(s)
Nanotubos de Carbono , Animales , Conejos , Antibacterianos , Fricción , Rotación , Esterilización
5.
Sensors (Basel) ; 22(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36560069

RESUMEN

Voids, a common defect in tunnel construction, lead to the deterioration of the lining structure and reduce the safety of tunnels. In this study, ground-penetrating radar (GPR) was used in tunnel lining void detection. Based on the finite difference time domain (FDTD) method, a forward model was established to simulate the process of tunnel lining void detection. The area of the forward image and the actual void area was analyzed based on the binarization method. Both the plain concrete and reinforced concrete lining with various sizes of air-filled and water-filled voids were considered. The rationality of the model was verified by measured data. It was observed that the response mode of voids can be hyperbolic, bowl-shaped, and strip-shaped, and this depends on the void's width. Compared with the air-filled voids, water filling increases the response range of the voids and produces a virtual image. Although the diffracted wave caused by a steel bar will bring about significant interference to the void response, the center position of the voids can be accurately located using 3D GPR.

6.
Nanotechnology ; 30(4): 045701, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30460926

RESUMEN

A binary nanocomposite composed of two-dimensional (2D) ultrathin ZnIn2S4 nanosheets and one-dimension (1D) TiO2 nanobelts was prepared and applied as a noble-metal-free photocatalyst for hydrogen evolution under solar-light irradiation. The TiO2 nanobelt/ZnIn2S4 nanosheet heterojunction nanocomposites show higher light absorption capacity, larger surface area and higher separation of charge carriers in comparison to pristine TiO2 and ZnIn2S4. As a result, the hydrogen production over the TiO2/ZnIn2S4 nanocomposite with 15 wt% TiO2 can reach up to 348.21 µmol · g-1 · h-1, even without noble metals, which is about 26 and 2.3 times higher than the pristine TiO2 and ZnIn2S4, respectively. Meanwhile, a possible photocatalytic mechanism of TiO2/ZnIn2S4 heterojunction nanocomposites was proposed and corroborated by photoluminescence (PL) spectroscopy and photoelectrochemical (PEC) results. This work paves a way for developing low-cost and high-efficiency noble-metal-free photocatalytic systems for solar-to-hydrogen evolution.

7.
Phys Chem Chem Phys ; 20(26): 17781-17789, 2018 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-29922781

RESUMEN

ABO3 perovskite-type LaCoO3, LaCo0.5Fe0.5O3, LaCo0.5Ni0.5O3, and LaCo0.5Mn0.5O3 complex oxides were synthesized using the sol-gel method. The microstructure and the thermal expansion behavior of the oxides were investigated. Insights into phonon dispersion and the effects of doped transition metals on thermal expansion were obtained by first-principles calculations based on density functional theory. Thermal expansion coefficients (TECs) at finite temperatures were obtained by quasi harmonic approximation. B-site doping was found to reduce the size of the crystalline grains and the TECs of perovskite compounds. The average TECs of LaCoO3, LaCo0.5Fe0.5O3, LaCo0.5Ni0.5O3, and LaCo0.5Mn0.5O3 were 25 × 10-6 K-1, 11 × 10-6 K-1, 12.5 × 10-6 K-1, and 5 × 10-6 K-1, respectively, in the 0-1000 K temperature range. In addition, the TECs of LaCo0.5Fe0.5O3 and LaCo0.5Ni0.5O3 matched well with those of some common electrolytes.

8.
Langmuir ; 32(33): 8339-49, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27472250

RESUMEN

In an attempt to improve the mechanical properties of carbon fiber composites, propagation of poly(amidoamine) (PAMAM) dendrimers by in situ polymerization on a carbon fiber surface was performed. During polymerization processes, PAMAM was grafted on carbon fiber by repeated Michael addition and amidation reactions. The changes in surface microstructure and the chemical composition of carbon fibers before and after modification were investigated by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. All the results indicated that PAMAM was successfully grown on the carbon fiber surface. Such propagation could significantly increase the surface roughness and introduce sufficient polar groups onto the carbon fiber surface, enhancing the surface wettability of carbon fiber. The fractured surface of carbon fiber-reinforced composites showed a great enhancement of interfacial adhesion. Compared with those of desized fiber composites, the interlaminar shear strength and interfacial shear strength of PAMAM/fiber-reinforced composites showed increases of 55.49 and 110.94%, respectively.

9.
Int J Mol Sci ; 16(4): 8027-39, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25867476

RESUMEN

Microencapsulated phase-change materials (MPCM) can be used to develop a structural-functional integrated cement paste having high heat storage efficiency and suitable mechanical strength. However, the incorporation of MPCM has been found to degrade the mechanical properties of cement based composites. Therefore, in this research, the effect of carbon nanotubes (CNTs) on the properties of MPCM cement paste was evaluated. Test results showed that the incorporation of CNTs in MPCM cement paste accelerated the cement hydration reaction. SEM micrograph showed that CNTs were tightly attached to the cement hydration products. At the age of 28 days, the percentage increase in flexural and compressive strength with different dosage of CNTs was found to be up to 41% and 5% respectively. The optimum dosage of CNTs incorporated in MPCM cement paste was found to be 0.5 wt %. From the thermal performance test, it was found that the cement paste panels incorporated with different percentages of MPCM reduced the temperature measured at the center of the room by up to 4.6 °C. Inverse relationship was found between maximum temperature measured at the center of the room and the dosage of MPCM.


Asunto(s)
Cementos para Huesos/química , Nanotubos de Carbono/química , Fuerza Compresiva , Composición de Medicamentos/métodos , Ensayo de Materiales/métodos , Temperatura
10.
ACS Nano ; 18(40): 27752-27763, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39321467

RESUMEN

Electricity consumption for building cooling accounts for a significant portion of global energy usage and carbon emissions. To address this challenge, passive daytime radiative cooling (PDRC) has emerged as a promising technique for cooling buildings without electricity input. However, existing radiative coolers face material mismatch issues, particularly on cementitious composites like concrete, limiting their practical application. Here, we propose a cementitious radiative cooling armor based on a particle-solid transition architecture (PSTA) to overcome these challenges. The PSTA design features an asymmetric yet monolithic morphology and an all-inorganic nature, decoupling radiative cooling from building compatibility while ensuring UV resistance. In the PSTA design, nanoparticles on the surface serve as sunlight scatterers and thermal emitters, while those embedded within a cementitious substrate provide build compatibility and cohesiveness. This configuration results in enhanced interfacial bonding strength, high solar reflectance, and strong mid-infrared emittance. Specifically, the PSTA delivers an enhanced interfacial shear strength (0.93 MPa), several-fold higher than that in control groups (metal, glass, plastic) along with a cooling performance (a subambient temperature drop of ∼6.6 °C and a cooling power of ∼92.8 W under a direct solar irradiance of ∼680 W/m2) that rivals or outperforms previous reports. Importantly, the design concept of the PSTA is applicable to various particles and solids, facilitating the practical application of PDRC technology in building scenarios.

11.
J Colloid Interface Sci ; 656: 189-199, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37989052

RESUMEN

Interfacial solar steam generation using aerogels holds great promise for seawater desalination and wastewater treatment. However, to achieve aerogels with both durable, high-efficiency evaporation performance and excellent salt resistance remains challenging. Here, a molybdenum disulphide (MoS2) and MXene composite aerogel with vertical pore channels is reported, which has outstanding advantages in mechanical properties, water transportation, photothermal conversion, and recycling stability. Benefiting from the plasmon resonance effect of MXene and the excellent photothermal conversion performance of MoS2, the aerogel exhibits excellent light absorption (96.58 %). The aerogel is resistant to deformation and able to rebound after water absorption, because of the support of an ordered vertical structure. Moreover, combined with the low water evaporation enthalpy, low thermal conductivity, and super hydrophilicity, the aerogel achieves an efficient and stable evaporation rate of about 2.75 kg m-2h-1 under one sun and exhibits excellent self-cleaning ability. Notably, the evaporator achieves removal rates of 99.9 % for heavy metal ions and 100 % for organic dyes, which has great potential in applications including seawater desalination and wastewater purification.

12.
Talanta ; 276: 126234, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749161

RESUMEN

Glutathione (GSH) is an essential antioxidant in the human body, but its detection is difficult due to the interference of complex components in serum. Herein, hollow double-layer Pt@CeO2 nanospheres were developed as oxidase mimetics, and the light-assisted oxidase mimetics effects were found. The oxidase activity was enhanced significantly by utilizing the synergistic effect of Schottky junction and the localized surface plasmon resonance (LSPR) of Pt under UV light. A novel GSH colorimetric-fluorescent-SERS sensing platform was established, with the sensing performance notably boosted by using the light-assisted oxidase mimetics effects. This platform boasts an exceptionally low detection limit (LOD) of 0.084 µM, while the detection time was shortened from 10 min to just 2 min. The anti-interference detection with high recovery rate (96.84%-107.4 %) in real serum made it be promising for practical application.


Asunto(s)
Cerio , Colorimetría , Glutatión , Nanosferas , Oxidorreductasas , Platino (Metal) , Resonancia por Plasmón de Superficie , Glutatión/sangre , Glutatión/química , Colorimetría/métodos , Platino (Metal)/química , Humanos , Cerio/química , Nanosferas/química , Oxidorreductasas/química , Resonancia por Plasmón de Superficie/métodos , Límite de Detección , Materiales Biomiméticos/química , Espectrometría de Fluorescencia/métodos
13.
J Adv Res ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38806097

RESUMEN

INTRODUCTION: As an important herbivore-induced plant volatile, (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) is known for its defensive role against multiple insect pests, including attracting natural enemies. A terpene synthase (GhTPS14) and two cytochrome P450 (GhCYP82L1, GhCYP82L2) enzymes are involved in the de novo synthesis of DMNT in cotton. We conducted a study to test the potential of manipulating DMNT-synthesizing enzymes to enhance plant resistance to insects. OBJECTIVES: To manipulate DMNT emissions in cotton and generate cotton lines with increased resistance to mirid bug Apolygus lucorum. METHODS: Biosynthesis and emission of DMNT by cotton plants were altered using CRISPR/Cas9 and overexpression approaches. Dynamic headspace sampling and GC-MS analysis were used to collect, identify and quantify volatiles. The attractiveness and suitability of cotton lines against mirid bug and its parasitoid Peristenus spretus were evaluated through various assays. RESULTS: No DMNT emission was detected in knockout CAS-L1L2 line, where both GhCYP82L1 and GhCYP82L2 were knocked out. In contrast, gene-overexpressed lines released higher amounts of DMNT when infested by A. lucorum. At the flowering stage, L114 (co-overexpressing GhCYP82L1 and GhTPS14) emitted 10-15-fold higher amounts than controls. DMNT emission in overexpressed transgenic lines could be triggered by methyl jasmonate (MeJA) treatment. Apolygus lucorum and its parasitoid were far less attracted to the double edited CAS-L1L2 plants, however, co-overexpressed line L114 significantly attracted bugs and female wasps. A high dose of DMNT, comparable to the emission of L114, significantly inhibited the growth of A. lucorum, and further resulted in higher mortalities. CONCLUSION: Turning down DMNT emission attenuated the behavioral preferences of A. lucorum to cotton. Genetically modified cotton plants with elevated DMNT emission not only recruited parasitoids to enhance indirect defense, but also formed an ecological trap to kill the bugs. Therefore, manipulation of DMNT biosynthesis and emission in plants presents a promising strategy for controlling mirid bugs.

14.
J Colloid Interface Sci ; 672: 75-85, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833736

RESUMEN

Carbon dioxide (CO2) electroreduction provides a sustainable route for realizing carbon neutrality and energy supply. Up to now, challenges remain in employing abundant and inexpensive nickel materials as candidates for CO2 reduction due to their low activity and favorable hydrogen evolution. Here, the representative iron-modified nickel nanoparticles embedded in nitrogen-doped carbon (Ni1-Fe0.125-NC) with the porous botryoid morphology were successfully developed. Hexamethylenetetramine is used as nitrogen-doped carbon source. The collaboration of internal lattice expansion with electron effect and external confinement effect with size effect endows the significant enhancement in electrocatalytic CO2 reduction. The optimized Ni1-Fe0.125-NC exhibits broad potential ranges for continuous carbon monoxide (CO) production. A superb CO Faradaic efficiency (FECO) of 85.0 % realized at -1.1 V maintains a longtime durability over 35 h, which exceeds many state-of-the-art metal catalysts. Theoretical calculations further confirm that electron redistribution promotes the desorption of CO in the process for favorable CO production. This work opens a new avenue to design efficient nickel-based materials by considering the intrinsic structure and external confinement for CO2 reduction.

15.
Adv Sci (Weinh) ; 11(16): e2306842, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353512

RESUMEN

The development of magnetocaloric materials with a significantly enhanced volumetric cooling capability is highly desirable for the application of adiabatic demagnetization refrigerators in confined spatial environments. Here, the thermodynamic characteristics of a magnetically frustrated spin-7/2 Gd9.33[SiO4]6O2 is presented, which exhibits strongly correlated spin disorder below ≈1.5 K. A quantitative model is proposed to describe the magnetization results by incorporating nearest-neighbor Heisenberg antiferromagnetic and dipolar interactions. Remarkably, the recorded magnetocaloric responses are unprecedentedly large and applicable below 1.0 K. It is proposed that the S = 7/2 spin liquids serve as versatile platforms for investigating high-performance magnetocaloric materials in the sub-kelvin regime, particularly those exhibiting a superior cooling power per unit volume.

16.
Materials (Basel) ; 16(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570143

RESUMEN

Triboelectric nanogenerators (TENG) have shown great potential in harvesting energy from water. For the TENG that harvests water energy, surface hydrophobicity is crucial for its performance. In this paper, we prepare a hydrophobic composite film of Polyvinylidene Fluoride/Polydimethylsiloxane/Polytetrafluoroethylene (PVDF/PDMS/PTFE) and an electrode of Polyaniline/Carbon nanotubes/Silver nanowires (PANI/CNTs/AgNWs) by electrospinning technology and a doping method, respectively, which are served as the friction layer and top electrode of TENG. The contact angle of the hydrophobic film and electrode both reach over 120°, which makes the separation process between water and the interface complete and promotes the output of TENG. The open-circuit voltage (Voc) and short-circuit current (Isc) can reach 150 V and 60 µA approximately. In addition, the composite electrode can be applied in the preparation of complex electrode shapes. Furthermore, the different reactions of TENG to different liquids indicate that it may contribute to liquid-type sensing systems. This work presents an efficient approach to fabricating hydrophobic films and electrodes, laying a foundation for the development of TENG for harvesting water energy.

17.
Materials (Basel) ; 16(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36837113

RESUMEN

The use of recycled coarse aggregates (RA) in concrete is a sustainable alternative to non-renewable natural aggregate (NA) to fabricate concrete products using in concrete structures. However, the adhered mortar on the surface of RA would considerably impact the qualities of concrete products. As a practical treatment procedure, mechanical screening can remove the adhered mortar. This research aims to study the influence of mechanical screening on the fundamental properties of RA and the resulting self-compacting concrete (SCC). The RA were mechanically screened up to four times, and their physical properties including particle size distribution, water absorption, and crushing value were investigated. The properties of RA-SCC including workability, density, compressive and tensile strengths, modulus of elasticity, and microstructure were also examined. The results demonstrated that screening reduced the water absorption of RA from 6.26% to 5.33% and consequently enhanced the workability of RA-SCC. Furthermore, it was shown that increasing the screening up to twice improved the mechanical properties of concrete. In particular, screening increased the compressive strength of concrete by 15-35% compared to the concrete with unscreened RA. Similar improvements were found in tensile strength as well as the elastic modulus results. The microstructure of screened RA-SCC was comparable to that of the control concrete, showing minimal porosity and cracks along the interfacial transition zone. In conclusion, once or twice screening is recommended to the recycling facility plant to remove adequate amount of adhered mortar and fines while preventing damages to the RA. Improving the quality of RA via mechanical screening is one of the promising approaches to increase their potential for use in concrete, thereby reducing extraction of natural resources and promoting a circular economy.

18.
Materials (Basel) ; 16(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38005083

RESUMEN

Detecting heavy metals in seawater is challenging due to the high salinity and complex composition, which cause strong interference. To address this issue, we propose using a multistage energy barrier as an electrochemical driver to generate electrochemical responses that can resist interference. The Ni-based heterojunction foams with different types of barriers were fabricated to detect Cr(VI), and the effects of the energy barriers on the electrochemical response were studied. The single-stage barrier can effectively drive the electrochemical response, and the multistage barrier is even more powerful in improving sensing performance. A prototype Ni/NiO/CeO2/Au/PANI foam with multistage barriers achieved a high sensitivity and recovery rate (93.63-104.79%) in detecting seawater while resisting interference. The use of multistage barriers as a driver to resist electrochemical interference is a promising approach.

19.
ACS Appl Mater Interfaces ; 15(13): 17103-17112, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36952632

RESUMEN

Polymers with excellent dielectric properties are strongly desired for pulsed power film capacitors. However, the adverse coupling between the dielectric constant and breakdown strength greatly limits the energy storage capability of polymers. In this work, we report an easily operated method to solve this problem via sputtering the interface of bilayer polymer films with ultralow content of gold nanoparticles. Interestingly, the gold nanoparticles can effectively block the movement of charge carriers because of the Coulomb blocking effect, yielding significantly enhanced breakdown strength. Meanwhile, the gold nanoparticles can act as electrodes to form numerous equivalent microcapacitors, resulting in an obviously enhanced dielectric constant. Impressively, the polymer film with merely 0.01 vol % gold nanoparticles exhibits an obvious dielectric constant and breakdown strength, which are 129 and 131% that of the pristine polymer film, respectively. Consequently, a high energy density which is 176% of that of the pristine polymer film is achieved, and a high efficiency of 79.2% is maintained. Moreover, this process can be well combined with the production process of commercial dielectric polymer films, which is beneficial for mass production. This work offers an easily operated way to improve the dielectric capacitive energy storage properties of polymers, which could also be applicable to other materials, such as ceramics and composites.

20.
Mater Horiz ; 10(7): 2476-2486, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37039502

RESUMEN

High-energy density polymer dielectrics play a crucial role in various pulsed energy storage and conversion systems. So far, many strategies have been demonstrated to be able to effectively improve the energy density of polymer dielectrics, but sophisticated fabrication processes are usually needed which result in high cost and poor repeatability. Herein, an easy-operated sputtering and hot-pressing process is developed to significantly enhance the energy density of polymer dielectrics. Surprisingly, for the poly(vinylidene fluoride-hexafluoropropylene) films sputtered with merely 0.0064 vol% gold nanoparticles, the energy density is remarkably improved by 84.3% because of the concurrent enhancements in breakdown strength (by 37.5%) and dielectric permittivity (by 25.5%), which is demonstrated to have originated from the unique Coulomb blockade and micro-capacitor effect of the gold nanoparticles. It is further confirmed that this design strategy is also applicable for commercial biaxially oriented polypropylene and poly(methyl methacrylate). This work offers a novel, easy-operated and universally applicable route to improve the energy density of polymeric dielectrics, which paves the way for their application in modern electronics and power modules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA