Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 30(25): 254003, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-30743254

RESUMEN

Photodetectors have widespread applications in fields including telecommunications, thermal imaging and bio-medical imaging. The photogating effect, arising from charge trapping at defects and/or interfaces, can have extremely high photoelectric gain which can be a benefit to high-sensitivity room temperature photodetection. Here, we introduce thin layered organic charge transfer complexes (CPXs) integrated on graphene transistors for the development of hybrid phototransistors with ultra-high photoresponsivity of ∼106 A W-1 in the near infrared (NIR) region at room temperature. Our study has demonstrated a graphene-organic CPX with a broadband photoresponse ranging from the visible to the NIR region. The high photoelectric gain was from the photogating effect at the graphene/CPX interface. In addition, the photoresponse properties of the graphene-organic CPX can be regulated by electrical gating of graphene.

2.
J Am Chem Soc ; 137(22): 7051-4, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25996159

RESUMEN

Group IVB transition metal (Zr and Hf) dichalcogenide (TMD) monolayers can have higher carrier mobility and higher tunneling current density than group VIB (Mo and W) TMD monolayers. Here we report the synthesis of hexagonal ZrS2 monolayer and few layers on hexagonal boron nitride (BN) using ZrCl4 and S as precursors. The domain size of ZrS2 hexagons is around 1-3 µm. The number of layers of ZrS2 was controlled by tuning the evaporation temperature of ZrCl4. The stacking angle between ZrS2 and BN characterized by transmission electron microscopy shows a preferred stacking angle of near 0°. Field-effect transistors (FETs) fabricated on ZrS2 flakes showed n-type transport behavior with an estimated mobility of 0.1-1.1 cm(2) V(-1) s(-1).

3.
ACS Appl Mater Interfaces ; 11(37): 34424-34429, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31448585

RESUMEN

Two-dimensional (2D) materials, with atomic thickness and unique electronic structure, hold great potentials in electronic device applications. Charge transfer at the interface of 2D materials further provides a versatile platform for applications in electronics. Here, we report nonvolatile memory devices based on interface charge trapping between 2D WSe2 and organic electron acceptors. The 2D WSe2-organic acceptor hybrid structure exhibits a high storage performance, such as large gate memory windows, high on/off ratios (>103), and long retention time (>1000 s). Further analysis revealed that organic acceptors with a stronger electron affinity (i.e., higher redox potential) have a larger electron-trapping ability and hence a better memory performance.

4.
ACS Omega ; 3(10): 14302-14308, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458120

RESUMEN

Molecule/protein aggregation causes many devastating and incurable diseases in human bodies. For example, studies have revealed that protein oligomers formed at the early stage are toxic and may be mostly responsible for some diseases. In the fundamental research, differentiation of different protein oligomers and quantification of the concentrations are important and challenging. Here, we have developed a multichannel time-tagged time-resolved (TTTR) confocal fluorescence model based on antibunching effect to solve the problem. The key point of the model is that n-oligomers labeled with n-dyes cannot emit more than n photons at one time. By assuming that all labeling dyes behave perfectly as noninteractive individual dyes, the analytic relationship between photon-emission probability and oligomer concentrations has been derived. Simulations have been carried out to verify the model, in which differentiation and concentration quantification of up to tetraoligomers can be realized with a relative error <10% in an eight-channel TTTR confocal setup with eight single-photon detectors.

5.
Sci Bull (Beijing) ; 62(1): 9-15, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36718073

RESUMEN

Fluorescence correlation spectroscopy (FCS) is a widely used method for measuring molecular diffusion and chemical kinetics. However, when a mixture of fluorescent species is taken into account, the conventional FCS method has limitations in extracting autocorrelations for different species and cross correlations between different species. Recently developed fluorescence lifetime correlation spectroscopy (FLCS) based on time-tagged time-resolved (TTTR) photon recording, which can record the global and micro arrival time for each individual photon, has been used to discriminate different species according to fluorescence lifetime. Here, based on two-dimensional lifetime decay maps constructed from TTTR photon stream, we have developed a quantitative lifetime-deconvolution FCS model (LDFCS) to extract precise chemical rates for chemical conversions in multi-species systems. The key point of LDFCS model is separation of different species according to the global distribution of fluorescence lifetime and then deconvolution of autocorrelations and cross-correlations from the two-dimensional lifetime decay maps constructed by the micro arrival times of photon pairs at each delay time.

6.
Nanomaterials (Basel) ; 7(5)2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28441351

RESUMEN

Luminescent quantum dots (QDs) with unique optical properties have potential applications in bio-imaging. The interaction between QDs and bio-molecules is important to the biological effect of QDs in vivo. In this paper, we have employed fluorescence correlation spectroscopy (FCS) to probe the temperature- and pH-dependent interactions between CdSe QDs with carboxyl (QDs-COOH) and bovine serum albumin (BSA) in buffer solutions. The results have shown that microscopic dissociation constant K'D is in the range of (1.5 ± 0.2) × 10-5 to (8.6 ± 0.1) × 10-7 M, the Hill coefficient n is from 0.4 to 2.3, and the protein corona thickness is from 3.0 to 9.4 nm. Variable-temperature measurements have shown both negative values of ∆H and ∆S for BSA adsorption on QDs-COOH, while pH has a profound effect on the adsorption. Additional, FCS measurement QDs-COOH and proteins in whole mice serum and plasma samples has also been conducted. Finally, simulation results have shown four favored QD binding sites in BSA.

7.
Sci Rep ; 6: 25518, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27145858

RESUMEN

Silver nanoparticles (AgNPs) have tremendous potentials in medical devices due to their excellent antimicrobial properties. Blood compatibility should be investigated for AgNPs due to the potential blood contact. However, so far, most studies are not systematic and have not provided insights into the mechanisms for blood compatibility of AgNPs. In this study, we have investigated the blood biological effects, including hemolysis, lymphocyte proliferation, platelet aggregation, coagulation and complement activation, of 20 nm AgNPs with two different surface coatings (polyvinyl pyrrolidone and citrate). Our results have revealed AgNPs could elicit hemolysis and severely impact the proliferation and viability of lymphocytes at all investigated concentrations (10, 20, 40 µg/mL). Nevertheless, AgNPs didn't show any effect on platelet aggregation, coagulation process, or complement activation at up to ~40 µg/mL. Proteomic analysis on AgNPs plasma proteins corona has revealed that acidic and small molecular weight blood plasma proteins were preferentially adsorbed onto AgNPs, and these include some important proteins relevant to hemostasis, coagulation, platelet, complement activation and immune responses. The predicted biological effects of AgNPs by proteomic analysis are mostly consistent with our experimental data since there were few C3 components on AgNPs and more negative than positive factors involving platelet aggregation and thrombosis.


Asunto(s)
Antiinfecciosos/farmacología , Expresión Génica/efectos de los fármacos , Linfocitos/efectos de los fármacos , Nanopartículas del Metal/química , Plata/farmacología , Coagulación Sanguínea/efectos de los fármacos , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Proliferación Celular/efectos de los fármacos , Citratos/química , Citratos/farmacología , Activación de Complemento/efectos de los fármacos , Biología Computacional/métodos , Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Linfocitos/citología , Linfocitos/metabolismo , Nanopartículas del Metal/ultraestructura , Agregación Plaquetaria/efectos de los fármacos , Povidona/química , Povidona/farmacología , Cultivo Primario de Células , Proteoma/genética , Proteoma/metabolismo , Citrato de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA