Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 353: 120188, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38308990

RESUMEN

With the global emphasis on environmental protection and increasingly stringent emission regulations for internal combustion engines, there is an urgent need to overcome the problem of large hydrocarbon (HC) emissions caused by unstable engine cold starts. Synergistic engine pre-treatment (reducing hydrocarbon production) as well as after-treatment devices (adsorbing and oxidizing hydrocarbons) is the fundamental solution to emissions. In this paper, the improvement of hydrocarbon emissions is summarized from two aspects: pre-treatment and after-treatment. The pre-treatment for engine cold start mainly focuses on summarizing the intake control, fuel, and engine timing parameters. The after-treatment mainly focuses on summarizing different types of adsorbents and modifications (mainly including different molecular sieve structures and sizes, preparation conditions, silicon aluminum ratio, ion exchange modification, and heterogeneity, etc.), adsorptive catalysts (mainly including optimization of catalytic performance and structure), and catalytic devices (mainly including coupling with thermal management equipment and HC trap devices). In this paper, a SWOT (strength, weakness, opportunity, and threat) analysis of pre-treatment and after-treatment measures is conducted. Researchers can obtain relevant research results and seek new research directions and approaches for controlling cold start HC emissions.


Asunto(s)
Automóviles , Gasolina , Gasolina/análisis , Emisiones de Vehículos/análisis , Adsorción , Hidrocarburos/análisis
2.
Materials (Basel) ; 16(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37445200

RESUMEN

In this paper, a metal inert gas (MIG) shielded welding method was used for high-quality welding of 6063-T6 aluminum alloy sheet with a thickness of 2.5 mm. The welding process of MIG welding was accurately simulated and the welding temperature field and thermal cycle curve were calculated using a combination of Gaussian body heat source and double ellipsoidal heat source. As the welding current increased from 75 A to 90 A, the reinforcing phase precipitated under the microstructure of the joint gradually became larger and re-solidified into the body, resulting in a reduction in mechanical properties. When the welding current is 85 A, the pitting resistance of weld forming and weld area reaches its optimum. At this time, the tensile strength of the joint is up to 110.9 MPa, the elongation is up to 16.3% and the Vickers Microhardness is up to 46.9 HV.

3.
Materials (Basel) ; 15(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35955367

RESUMEN

In this paper, the S32101 duplex stainless steel welded joints were produced by a K-TIG welding system. The weld geometry parameters under different welding speeds were analyzed by combining the morphological characteristics of the keyhole. The microstructure and impact toughness of the base metal and weld metal zone under different welding speeds were studied. The experiment results show that the welding speed has quite an effect on the geometry profile of the weld. In addition, the characteristic parameters of the keyhole can effectively predict the geometry profile of the weld. The test results prove that the microstructure, Σ3 coincidence site lattice grain boundary, and phase boundary of ferrite and austenite have an effect on the impact property of the weld metal zone. When the proportion of the austenite, Σ3 coincidence site lattice grain boundary and random phase boundary increased, the impact property of the weld metal zone also increased.

4.
Materials (Basel) ; 15(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35629653

RESUMEN

This paper attempted to establish a relationship between the morphology, microstructure and mechanical properties of a laser lap welded joint (WJ) of 780 duplex-phase (DP) steel under different welding parameters. The experimental results showed that the microstructure of the heat-affected zone (HAZ) of all the WJs were tempered martensite and equiaxed ferrite. The microstructure at the fusion zone (FZ) in all the WJs was dominated by lath martensite and ferrite, and the grain size of the FZ was larger than that in the base materials (BMs). The mechanical properties of the welded joints were tested by a universal testing machine, and the changing law of lap tensile resistance with the laser-welding parameters was analyzed. The results show that there was a linear relationship between the width of the weld and the tensile-shear forces of the weld, and the penetration of the weld had no obvious effect on the tensile-shear forces of the weld. A binary linear-regression equation was established to reveal the degree of influence of welding speed and laser power on the mechanical properties of WJs. It was found that the laser power had a greater influence on the mechanical properties of WJs than the welding speed.

5.
Materials (Basel) ; 16(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36614590

RESUMEN

In this paper, the microstructure and pitting corrosion resistance of S32101 duplex stainless steel keyhole tungsten inert gas welded joints with different heat inputs were studied. The electrochemical experiments were conducted in a 1 mol/L NaCl solution at room temperature. The pitting rupture potential of the heat affected zone and the weld metal zone under different heat inputs were tested. The research showed that with the increase of heat inputs, more ferrite was converted to austenite and the number and size of intragranular austenite grains in the weld metal zone increased. The austenite content of the heat affected zone and the weld metal zone increase with the increase of heat inputs, and the CrN and Cr2N in the heat affected zone and the weld metal zone were mainly precipitated in the ferrite, in the austenite and ferrite/austenite interfaces. The pitting rupture potential value of the heat affected zone and the weld metal zone were increased with the increase of heat inputs, and the pitting corrosion resistance of the heat affected zone and weld metal zone were also increased with the increase of heat inputs. The relationship between the position CrN and Cr2N, the austenite content and the pitting corrosion resistance were elucidated, and the initiation mechanism of the pitting was investigated. Additionally, in this work, the heat affected zone and weld metal zone made at 2.46 kJ/mm heat inputs had the best pitting corrosion resistance. The research results provided useful information for improving the pitting corrosion resistance of S32101 duplex stainless steel keyhole tungsten inert gas welded joints.

6.
Materials (Basel) ; 14(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205556

RESUMEN

In this paper, 8.0 mm thickness 2205 duplex stainless steel (DSS) workpieces were welded with a keyhole tungsten inert gas (K-TIG) welding system under different welding speeds. After welding, the morphologies of the welds under different welding speed conditions were compared and analyzed. The microstructure, two-phase ratio of austenite/ferrite, and grain boundary characteristics of the welded joints were studied, and the microhardness and tensile properties of the welded joints were tested. The results show that the welding speed has a significant effect on the weld morphology, the two-phase ratio, grain boundary misorientation angle (GBMA), and mechanical properties of the welded joint. When the welding speed increased from 280 mm/min to 340 mm/min, the austenite content and the two-phase ratio in the weld metal zone (WMZ) decreased. However, the ferrite content in the WMZ increased. The proportion of the Σ3 coincident site lattice grain boundary (CSLGB) decreased as the welding speed increased, which has no significant effect on the tensile strength of welded joints. The microhardness of the WMZ and the tensile strength of the welded joint gradually increased when the welding speed was 280-340 mm/min. The 2205 DSS K-TIG welded joints have good plasticity.

7.
Materials (Basel) ; 12(10)2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31137474

RESUMEN

In this paper, the microstructure and impact toughness of a S32101 duplex stainless steel underwater local-dry keyhole tungsten inert gas welded joint were studied. The impact toughness value of the underwater weld metal reached 78% of the onshore weld metal, which is in accordance with the underwater welding standards. The proportion of austenite in the underwater weld metal was 0.9% lower than that of the onshore weld metal. The proportion of the Σ3 coincidence site lattice boundaries and random phase boundaries in the underwater weld metal, which significantly influence the impact toughness of the weld metal, were smaller than that of the onshore weld metal.

8.
Materials (Basel) ; 11(1)2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29361743

RESUMEN

Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA