Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(38): 11904-11912, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39265073

RESUMEN

Traditional deicing methods are increasingly insufficient for modern technologies like 5G infrastructure, photovoltaic systems, nearspace aerocraft, and terrestrial observatories. To address the challenge of combining anti-icing efficiency with operational performance, an innovative, spectrally selective, photo/electrothermic, ice-phobic film was prepared through a cost-effective mist deposition method. By manipulating the diameter ratio and density of nanowires, the local density of free electrons within this film is controlled to precisely dictate the position and intensity of surface plasmon resonance to achieve spectrally selective photo/electrothermal conversion. Additionally, the synthesized hydrophobic N-Boroxine-PDMS/SiO2 layer improves thermal stability and accelerates the deicing process. It achieves rapid deicing within 86 s under photothermal conditions and 65 s with Joule heating while maintaining high optical transmittance. The film improves the operational efficiency and thermal safety of equipment while preserving aesthetics and stability, thereby underscoring its broad suitability for advanced outdoor installations in cold environments.

2.
Small ; 20(35): e2312083, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38644686

RESUMEN

Due to the ubiquitous and inexhaustible solar source, photothermal materials have gained considerable attention for their potential in heating and de-icing. Nevertheless, traditional photothermal materials, exemplified by graphene, frequently encounter challenges emanating from their elevated reflectance. Inspired by ocular structures, this study uses the Fresnel equation to enhance the photo-thermal conversion efficiency of graphene by introducing a polydimethylsiloxane (PDMS)/silicon dioxide (SiO2) coating, which reduces the light reflectance (≈20%) through destructive interference. The designed coating achieves an equilibrium temperature of ≈77 °C at one sun and a quick de-icing in ≈65 s, all with a thickness of 5 µm. Simulations demonstrate that applying this coating to high-rise buildings results in energy savings of ≈31% in winter heating. Furthermore, the combination of PDMS/SiO2 and graphene confers a notable enhancement in thermal stability through a synergistic flame-retardant mechanism, effectively safeguarding polyurethane against high temperatures and conflagrations, leading to marked reduction of 58% and 28% in heat release rate and total heat release. This innovative design enhances the photo-thermal conversion, de-icing function, and flame retardancy of graphene, thereby advancing its applications in outdoor equipment, high-rise buildings, and aerospace vessels.

3.
J Colloid Interface Sci ; 675: 14-23, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38964121

RESUMEN

Conductive hydrogels are pivotal for the advancement of flexible sensors, electronic skin, and healthcare monitoring systems, facilitating transformative innovations. However, issues such as inadequate intrinsic compatibility, mismatched mechanical properties, and limited stability curtail their potential, resulting in compromised device efficacy and performance degradation. In this research, we engineered functional hydrogels featuring a dual-crosslinked network composed of (PA/PVA)-P(AM-AA) to address these challenges. This design eliminates the need for conductive additives, thereby enhancing intrinsic compatibility. Notably, the hydrogels exhibit exceptional mechanical properties, with high tensile strength (∼700 %), Young's modulus (∼5.33 MPa), increased strength (∼2.46 MPa) and toughness (∼6.59 MJ m-3). They also achieve a compressive strength of âˆ¼7.33 MPa at 80 % maximal compressive strain and maintain about 89 % transparency. Moreover, flexible sensors derived from these hydrogels demonstrate enhanced multimodal sensing capabilities, including temperature, strain, and pressure detection, enabling precise monitoring of human movements. The integration of multiple hydrogels into a three-dimensional sensor array facilitates detailed spatial pressure distribution mapping. By strategically applying dual-crosslinked network engineering and eliminating conductive additives, we have streamlined the design and manufacturing of hydrogels to meet the rising demand for high-performance wearable sensors.

4.
Front Oncol ; 13: 1274340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901319

RESUMEN

Introduction: Breast cancer is the most common malignancy among women. Previous studies had shown that hepatitis C virus (HCV) infection might serve as a risk factor for breast cancer, while some studies failed to find such an association. Methods: In this study, we presented a first attempt to capture and clarify this clinical debate via a cumulative analysis (registration ID: CRD42023445888). Results: After systematically searching and excluding the irrelevant publications, five case-control or cohort studies were finally included. The synthetic effect from the eligible studies showed that patients with HCV infection had a significantly higher prevalence of breast cancer than non-HCV infected general population (combined HR= 1.382, 95%CI: 1.129 to 1.692, P=0.002). There was no evidence of statistical heterogeneity during this pooled analysis (I2 = 13.2%, P=0.33). The sensitivity analyses confirmed the above findings. No significant publication bias was observed among the included studies. The underlying pathophysiological mechanisms for this relationship might be associated with persistent infection/inflammation, host immune response, and the modulation of HCV-associated gene expression. Discussion: Though the causal association between HCV infection and breast cancer did not seem quite as strong, screening for HCV might enable the early detection of breast cancer and help to prevent the progression of the disease. Since the topic of this study remains a matter of clinical debate, further studies are still warranted to validate this potential association. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023445888.

5.
J Hazard Mater ; 437: 129446, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35897192

RESUMEN

In this work, a series of polymer materials including pomelo peel, cotton fabric, polyurethane foam, and so on, are treated by heated CH3SiCl3, presenting desirable photo-thermal conversion function and hydrophobicity. As a representative material, the surface element and skeleton morphology of pomelo peel foam treated by CH3SiCl3 are analyzed detailedly. It is found that well-hydrophobicity (water contact angle of ~147°) and photo-thermal conversion performance (~91.2 °C under one sun) are attributed to the surface carbonization reaction and formation of CH3-SiO2 nanoparticles. Meanwhile, the treatment of CH3SiCl3 significantly increases the BET surface area to 3.0635 m²/g from 0.0973 m²/g. Therefore, pomelo peel-derived carbon foam presents a desirable adsorption capacity of organic solvents and oils (up to 43.2 times its original weight) and excellent removal efficiency (>99.0%). In addition, the rapid photo-thermal response (achieve ~73 °C at 40 s) and high equilibrium temperature (~91.2 °C) are als° demonstrated in pomelo peel-derived carbon foam. As a result, the absorption rate of highly-viscous oils is effectively promoted by the higher fluidity and capillary action caused by the solar-promoted mechanism. This study offers a scalable, easily operated, and environmentally friendly approach to prepare hydrophobic and photo-thermal materials, thus demonstrating a huge potential in oil/water separation application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA