Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900038

RESUMEN

A new cladosporol derivative xylophilum A (1), together with 10 known compounds (2-11), were isolated from the rice fermentation of the fungus Cladosporium xylophilum. Their structures were established by extensive spectroscopic methods and comparison of their NMR data with literatures. The antimicrobial activity of compound 1 against 11 kinds of pathogenic microbial was evaluated, but no significant activity was found (MIC >100 µg/ml).

2.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1483-1490, 2023 Mar.
Artículo en Zh | MEDLINE | ID: mdl-37005835

RESUMEN

In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.


Asunto(s)
Cadmio , Panax notoginseng , Cadmio/toxicidad , Cadmio/metabolismo , Antioxidantes/farmacología , Brasinoesteroides/farmacología , Clorofila/metabolismo , Raíces de Plantas/metabolismo , Estrés Fisiológico
3.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1203-1211, 2023 Mar.
Artículo en Zh | MEDLINE | ID: mdl-37005804

RESUMEN

To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.


Asunto(s)
Panax notoginseng , Panax , Saponinas , Panax notoginseng/química , Antioxidantes/farmacología , Saponinas/farmacología , Glutatión , Medición de Riesgo
4.
Ecotoxicol Environ Saf ; 233: 113348, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35240504

RESUMEN

UPLC-MS/MS and GC-MS/MS were used to establish a method to simultaneously determine various pesticide residues in Panax notoginseng. Results showed that the limits of detection of 249 pesticides were all 5-10 µg/kg. The detection rate of pesticides in 121 P. notoginseng samples was 93.39%, and 19 pesticides were detected. According to the US Code of Federal Regulations, the Chinese Pharmacopoeia recommended algorithm, and the Japanese "positive list system", the pass rates of pesticide residues were 100%, 99.17%, and 89.26%, respectively. The chronic risk quotient (ADI%) and acute risk quotient (ARfD%) of P. notoginseng were 0.00-0.12% and 0.00-0.15%, respectively. In summary, the detection method established in this study can be used for routine analysis of various P. notoginseng pesticide residues. The pesticide residues in the main root samples of P. notoginseng were at a safe level and unlikely pose health risks to consumers.


Asunto(s)
Panax notoginseng , Residuos de Plaguicidas , Cromatografía Liquida , Ingestión de Alimentos , Contaminación de Alimentos/análisis , Panax notoginseng/química , Residuos de Plaguicidas/análisis , Medición de Riesgo , Espectrometría de Masas en Tándem/métodos
5.
Molecules ; 27(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35630824

RESUMEN

Albocimea B-E (1-4), four new sesquiterpenoids, and four known compounds, steperoxide A (5), dankasterone (6), 1H-indole-3-carboxylic acid (7), and (+)-formylanserinone B (8), were isolated from the rice fermentation of the fungus Antrodiella albocinnamomea. The structures of new compounds were elucidated by comprehensive spectroscopic techniques, the planar structures of new compounds were determined by comprehensive spectroscopic techniques, and their absolute configurations were confirmed via gauge-independent atomic orbital calculations (GIAO), calculation of the electronic circular dichroism (ECD), and optical rotation (OR). These were determined by spectroscopic data analysis.


Asunto(s)
Oryza , Sesquiterpenos , Dicroismo Circular , Fermentación , Polyporales , Sesquiterpenos/química
6.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235151

RESUMEN

Panax notoginseng flowers have the highest content of saponins compared to the other parts of Panax notoginseng, but minor ginsenosides have higher pharmacological activity than the main natural ginsenosides. Therefore, this study focused on the transformation of the main ginsenosides in Panax notoginseng flowers to minor ginsenosides using the fungus of Cladosporium xylophilum isolated from soil. The main ginsenosides Rb1, Rb2, Rb3, and Rc and the notoginsenoside Fa in Panax notoginseng flowers were transformed into the ginsenosides F2 and Rd2, the notoginsenosides Fd and Fe, and the ginsenoside R7; the conversion rates were 100, 100, 100, 88.5, and 100%, respectively. The transformation products were studied by TLC, HPLC, and MS analyses, and the biotransformation pathways of the major ginsenosides were proposed. In addition, the purified enzyme of the fungus was prepared with the molecular weight of 66.4 kDa. The transformation of the monomer ginsenosides by the crude enzyme is consistent with that by the fungus. Additionally, three saponins were isolated from the transformation products and identified as the ginsenoside Rd2 and the notoginsenosides Fe and Fd by NMR and MS analyses. This study provided a unique and powerful microbial strain for efficiently transformating major ginsenosides in P. notoginseng flowers to minor ginsenosides, which will help raise the functional and economic value of the P. notoginseng flower.


Asunto(s)
Ginsenósidos , Panax notoginseng , Panax , Saponinas , Cromatografía Líquida de Alta Presión , Cladosporium , Flores/química , Ginsenósidos/análisis , Panax/química , Panax notoginseng/química , Saponinas/análisis , Suelo
7.
Zhongguo Zhong Yao Za Zhi ; 47(1): 1-6, 2022 Jan.
Artículo en Zh | MEDLINE | ID: mdl-35178905

RESUMEN

Carbon dioxide peaking and carbon neutrality have become hot issues of political and economic activities in China and abroad. The structure and development of various industries in China will be profoundly affected in the process of accomplishing "Dual Carbon" goals. Eco-agriculture of Chinese medicine(EACM) highlights the balance and sustainable development of the ecosystem while producing high-quality medicinal materials. With chemically synthesized fertilizers, pesticides, and growth regulators prohibited, EACM emphasizes the recycling of agricultural and sideline products and the reduction of waste output, which results in the minimal negative impact on the ecological environment. Therefore, it is typical agriculture with low-carbon sources and high-carbon sinks. This study reviewed the mechanism and potential of EACM in carbon dioxide peaking and carbon neutrality, analyzed the specific ways of EACM in reducing carbon sources and increasing carbon sinks based on the typical ecological planting pattern, and proposed the point of view to strengthen EACM as well as the "Dual Carbon" theory and research methods, so as to direct low-carbon and efficient deve-lopment. Furthermore, this study advocated to comprehensively promote the transformation of Chinese medicine production from chemical agriculture to eco-agriculture to improve the comprehensive benefits of contribution rate of carbon neutrality, explore and establish carbon sink compensation mechanism to ensure the sustainable and healthy development of EACM, and strengthen the training of EACM and "Dual Carbon" theory and technologies to continuously improve the capacity of EACM in sustainable development. This study is expected to provide a reference for the development of ecological functions in EACM and the development of economic functions through ecological functions.


Asunto(s)
Dióxido de Carbono , Medicina Tradicional China , Agricultura , China , Ecosistema , Fertilizantes
8.
Zhongguo Zhong Yao Za Zhi ; 47(3): 635-642, 2022 Feb.
Artículo en Zh | MEDLINE | ID: mdl-35178945

RESUMEN

The continuous cropping obstacle of Panax notoginseng is serious, and effective control measures are lacking. Soil disinfection with chloropicrin(CP) has been proven to be effective in reducing the obstacles to continuous cropping of other crops. In order to ascertain the effect of CP in the continuous cropping of P. notoginseng, this paper explored the influences of CP at different treatment concentrations(0,30,40,50 kg/Mu, 1 Mu≈667 m~2) on soil macro-element nutrients, soil enzyme activity, growth and development of P. notoginseng, and the accumulation of medicinal components. The results showed that CP fumigation significantly increased the content of total nitrogen, alkali-hydrolyzable nitrogen, ammonium nitrogen, nitrate nitrogen, and available phosphorus in the soil, but it had no significant effect on potassium content. The soil protease activity showed a trend of first increasing and then decreasing with the prolonging of the treatment time. Both the soil urease and acid phosphatase activities showed a trend of first decreasing and then increasing with the prolonging of the treatment time. The higher the CP treatment concentration was, the lower the urease and acid phosphatase activities would be in the soil. The protease activity was relatively high after CP40 treatment, which was better than CP30 and CP50 treatments in promoting the nitrogen-phosphorus-potassium accumulation in P. notoginseng. The seedling survival rates after CP0, CP30, CP40, and CP50 tratments in October were 0, 65.56%, 89.44%, and 83.33%, respectively. Compared with the CP30 and CP50 treatments, CP40 treatment significantly facilitated the growth and development of P. notoginseng, the increase in fresh and dry weights, and the accumulation of root saponins. In summary, CP40 treatment accelerates the increase in soil nitrogen and phosphorus nutrients and their accumulation in P. notoginseng, elevates the seedling survival rate of P. notoginseng, enhances the growth and development of P. notoginseng, and promotes the accumulation of medicinal components. CP40 treatment is therefore recommended in production.


Asunto(s)
Panax notoginseng , Fumigación , Crecimiento y Desarrollo , Hidrocarburos Clorados , Suelo
9.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1438-1444, 2022 Mar.
Artículo en Zh | MEDLINE | ID: mdl-35347941

RESUMEN

Panax notoginseng is a perennial Chinese medicinal plant, which has serious continuous cropping obstacles and is prone to a variety of diseases and insect pests during the growth process. At present, the prevention and control of pests and diseases is mainly carried out through chemical pesticides, and the consequent pesticide residues of P. notoginseng have attracted much attention. This study reviewed the types and detection methods of pesticide residues in P. notoginseng from 1981 to 2021, and compared the limits of pesticide residues in P. notoginseng in China and abroad to provide a reference for rational application of pesticides in P. notoginseng and quality control of medicinal materials, thereby promoting the sustainable development of the P. notoginseng industry in China. Currently, there are only 40 published papers on pesticide residues of P. notoginseng, which is indicative of a serious problem of insufficient research. At present, hundreds of pesticide residues in P. notoginseng can be detected simultaneously by using chromatography-tandem mass spectrometry. The pesticides detected have gradually changed from early prohibited ones, such as dichlorodiphenyl trichloroethane(DDT), benzene hexachloride(BHC), and parathion, to low toxic ones(e.g., dimethomorph, procymidone, propicona-zole, and difenoconazole). The dietary risk from pesticide residues in P. notoginseng is low, which would not cause harm to consu-mers. This study concluded that in the future, the development of the quality standard for pesticide residues of P. notoginseng should be actively carried out. To increase the pesticides used in actual production in the quality standard based on the existing ones and to guide farmers to use pesticides scientifically will be the focus of future work.


Asunto(s)
Panax notoginseng , Residuos de Plaguicidas , Plaguicidas , Plantas Medicinales , China , Residuos de Plaguicidas/análisis , Plaguicidas/análisis
10.
Zhongguo Zhong Yao Za Zhi ; 46(1): 94-102, 2021 Jan.
Artículo en Zh | MEDLINE | ID: mdl-33645057

RESUMEN

This study cloned the transcription factor gene PnbHLH which held an open reading frame of 966 bp encoding 321 amino acids. This study constructed the overexpression vector of transcription factor PnbHLH of Panax notoginseng. The combination of PnbHLH overexpression and RNAi of the key enzyme gene PnCAS involved in the phytosterol biosynthesis was achieved in P. notoginseng cells, thus exploring the biosynthetic regulation of P. notoginseng saponins(PNS) by the synergistic effect of PnbHLH overexpression and PnCAS RNAi. The results showed that the PnbHLH transcription factor interacted with the promoters of key enzyme genes PnDS, PnSS and PnSE in the biosynthetic pathway of PNS, and then regulated the expression levels of key enzyme genes and affected the biosynthesis of saponins indirectly. Further study indicated that the synergistic effect of PnbHLH overexpression and PnCAS RNAi was a more effective approach to regulate the biosynthesis of saponins. Compared with the wild type and PnCAS RNAi cells of P. notoginseng, the contents of total saponins and monomeric saponins(Rd, Rb_1, Re, Rg_1 and R_1) were increased to some extent in the cell lines of PnbHLH overexpression and PnCAS RNAi. This indicated that the two ways of forward regulation and reverse regulation of saponin biosynthesis showed superposition effect. This study explored a more rational and efficient regulation strategy of PNS biosynthesis based on the advantages of multi-point regulation of transcription factors as well as the down-regulation of by-product synthesis of saponins.


Asunto(s)
Panax notoginseng , Saponinas , Transferasas Intramoleculares , Interferencia de ARN , Factores de Transcripción/genética
11.
Zhongguo Zhong Yao Za Zhi ; 45(6): 1342-1349, 2020 Mar.
Artículo en Zh | MEDLINE | ID: mdl-32281346

RESUMEN

The molecular markers(cpSSR, cpSNP and cpIndel) were developed based on the whole genome sequence of Panax notoginseng chloroplast genome, which provide a powerful tool for the evaluation and analysis of the future P. notoginseng germplasm resources. The 89 P. notoginseng samples from 9 groups were used for the experiment, and the data for the study were derived from NCBI and the GenBank numbers were: KJ566590, KP036468, KR021381 and KT001509. Through sequence alignment, 30 polymorphic sites(SNP and Indel) were identified, including 16 cpSNP and 14 cpIndel; cpSNP and cpIndel accounted for far more than the gene region in the intergenic region. The developed cpSSR reached 87-89, the repeat unit was mainly composed of trinucleotide, accounting for 70%-71%, and the dinucleotide was the least, accounting for 7%. Eighteen cpDNA molecular markers were developed, including 7 cpSSR primers, 6 cpIndel primers, and 5 cpSNP primers. The MatK gene and ycf1 primers were chosen as control. According to the results of DNA gel electrophoresis, cpSSR-5, pgcpir019 and pncp08 can be used to distinguish different cultivated populations of P. notoginseng. Among them, cpSSR-5 and pgcpir019 can also be used to distinguish the inter-species resources of ginseng by comprehensive sequence length, population π value and average nucleotide difference. However, pncp08 can only be used to distinguish different populations of P. notoginseng. In addition, the effect of distinguishing the groups of P. notoginseng, which the primer pncp-M(based on the MatK gene) is weaker than the cpSSR-5, pgcpir019 and pncp08.


Asunto(s)
ADN de Cloroplastos/genética , Mutación INDEL , Panax notoginseng/genética , Polimorfismo de Nucleótido Simple , Marcadores Genéticos , Genética de Población , Alineación de Secuencia
12.
Molecules ; 23(9)2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30200396

RESUMEN

The Panax notoginseng (P. notoginseng) stem leaf is rich in flavonoids. However, because of a lack of research on the flavonoid extraction process and functional development of P. notoginseng stem leaf, these parts are discarded as agricultural wastes. Therefore, in this study, we intend to optimize the extraction process and develop the skin-whitening functions of P. notoginseng stem leaf extracts. The extraction process of the stem and leaf of P. notoginseng flavonoid (SLPF) is optimized based on the Box⁻Behnken design (BBD) and the response surface methodology (RSM). The optimum extraction conditions of the SLPF are as follows: the extraction time, the ethanol concentration, the sodium dodecyl sulfate (SDS) content and the liquid material ratio (v/w, which are 52 min, 48.7%, 1.9%, and 20:1, respectively. Under the optimal extraction conditions, the average total SLPF content is 2.10%. The antioxidant activity and anti-deposition of melanin of mouse B16 cells of P. notoginseng stem leaf extracts are studied. The results indicate that the EC50 values of reducing activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activities, the superoxide anion removal ability, and the 2,2-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) free radical removal ability are 7.212, 2.893, 2.949, and 0.855 mg/mL, respectively. The extracts IC50 values of the tyrosinase and melanin synthesis are 0.045 and 0.046 mg/mL, respectively. Therefore, the optimal processing technology for the SLPF obtained in this study not only increases its utilization rate, but also decreases material costs. The extracts from the P. notoginseng stem leaf may be developed as food or beauty products.


Asunto(s)
Antioxidantes/uso terapéutico , Flavonoides/aislamiento & purificación , Melanoma Experimental/tratamiento farmacológico , Panax notoginseng/química , Hojas de la Planta/química , Tallos de la Planta/química , Análisis de Varianza , Animales , Antioxidantes/farmacología , Melaninas/biosíntesis , Melanoma Experimental/patología , Ratones , Modelos Teóricos , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Tensoactivos/química
13.
Zhongguo Zhong Yao Za Zhi ; 43(9): 1832-1837, 2018 May.
Artículo en Zh | MEDLINE | ID: mdl-29902893

RESUMEN

Chitinases, a glycosidase enzyme that hydrolyzes chitin to N-acetylglucosamine, are widely found in plant cells, and they are an important part of plant antifungal defense system. The function of a Panax notoginseng chitinase gene PnCHI1 was characterized in this paper. Expression vector of PnCHI1 was constructed and transiently expressed in onion epidermal cells, and laser scanning confocal microscopy demonstrated that PnCHI1 was localized in the cell wall. Prokaryotic expression vector of PnCHI1 was also constructed, and recombinant protein of PnCHI1 was induced and purified. In vitro antibacterial assay showed that recombinant PnCHI1 protein had strong inhibitory activity on the mycelium growth of Fusarium solani, F. oxysporum and F. verticillioide. The function of PnCHI1 was further verified by reverse genetics. PnCHI1 expression vector was transferred into tobacco by Agrobacterium tumefaciens and expression of PnCHI1 was confirmed by qRT-PCR. It was found by leaf inoculation experiment that resistance of transgenic tobacco to F. solani was significantly increased. It is conclnded that: PnCHI1 is a chitinase localized in the cell wall, which inhibits several fungi which cause the root rot disease of P. notoginseng. Overexpression of this chitinase gene in tobacco greatly increased resistance to F. solani. PnCHI1 may be an important resistance gene in P. notoginseng that participates in the defense against root rot disease.


Asunto(s)
Fusarium , Panax notoginseng , Quitina , Quitinasas , Enfermedades de las Plantas , Nicotiana
14.
Pharm Dev Technol ; 22(4): 511-520, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26763663

RESUMEN

In this work, imidazolium ionic liquids (imidazolium ILs) were employed as the novel chemical permeation enhancers (CPEs) and their performances and mechanisms of action were deeply investigated. Testosterone was used as a model drug to investigate the transdermal delivery enhancement of twenty imdidazolium ILs. The results suggested that the promotion activity connected to the structure and composition of the ILs. The quantitative structure-activity relationship (QSAR) model revealed a good linearity between the electronic properties of ILs and their enhancements. Furthermore, the transepidermal water loss (TEWL) and scanning laser confocal microscope (CLSM) examinations showed the strong improvement of ILs on skin barrier permeability, which were well correlated with the drug penetration profiles. The total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscope (AFM) evaluations of skins indicated that the ILs can disrupt the regular and compact arrangements of the corneocytes, change the surface properties of stratum corneum, and make the skin structure more permeable. Our work demonstrated the significant skin permeation promotion profiles of the imidazolium ILs, which are of great potential in transdermal drug delivery systems.


Asunto(s)
Andrógenos/administración & dosificación , Imidazoles/química , Líquidos Iónicos/química , Vehículos Farmacéuticos/química , Absorción Cutánea , Testosterona/administración & dosificación , Administración Cutánea , Andrógenos/farmacocinética , Animales , Masculino , Ratones , Permeabilidad , Piel/metabolismo , Piel/ultraestructura , Testosterona/farmacocinética
15.
Zhongguo Zhong Yao Za Zhi ; 42(16): 3106-3111, 2017 Aug.
Artículo en Zh | MEDLINE | ID: mdl-29171228

RESUMEN

Base on the transcriptome analysis and RT-PCR techniques,a pathogenesis-related protein 10 gene was isolated from Panax notoginseng root and named as PnPR10-2. Bioinformatics and phylogenetic trees analysis revealed that open reading frame (ORF) of PnPR10-2 was 465 bp in length,encoding 154 amino acids,containing one typical conserved domain of pathogenesis related protein Bet v I family, and showed high similarity with that from P. ginseng. The recombinant expressed plasmid pET32a(+)-PnPR10-2 was expressed in Escherichia coli BL21. The expression conditions were optimized and it could be expressed well in soluble and inclusion body protein. Purified PnPR10-2 recombinant protein from the supernatant of cells was used to analysis the pathogen resistance activity by paper method. The purified recombinant protein could inhibit typical root rot disease pathogen (Fusarium solani and Cylindrocarpon destructans)growth evidently, we conjecture that PnPR10-2 may participated in defense response of P. notoginseng resistance to root rot disease pathogen.


Asunto(s)
Genes de Plantas , Panax notoginseng/genética , Proteínas de Plantas/genética , Bacterias , Clonación Molecular , Filogenia
16.
Zhongguo Zhong Yao Za Zhi ; 41(12): 2194-2200, 2016 Jun.
Artículo en Zh | MEDLINE | ID: mdl-28901059

RESUMEN

Effect of different water conditions on the physiological indexes (e.g.seed water content, vigor, antioxidase activities)of Panax notoginseng seeds were studied under process of after-ripening and germination.The results showed show that compared with 2.5% treatment, under the treatment of 5%, P.notoginseng seeds possessed stable seed water content, the seed vigor was exceed by 51%,variation of antioxidant enzyme (SOD, POD, CAT) activity and malondialdehyde (MDA) content were small, crude fat and total sugar content decreased significantly.With the increase of PEG 6000 concentration, the germination characteristic indexes obviously decreased, antioxidase activities increased firstly and decreased afterwards, content of MDA, soluble protein and total sugar increased obviously.There were significant positive correlation between germination characteristic indexes and osmotic substance content(r>0.900, P<0.01), and significant negative correlation with MDA (r>0.900, P<0.01).In conclusion, because the characteristic of dehydration intolerance of P.notoginseng seeds, 5% water content of sand burying stratification treatment was the best for after-ripening, 15% concentration of PEG 6000 treatment was the highest tolerance limit of germination process.


Asunto(s)
Germinación , Panax notoginseng/fisiología , Semillas/fisiología , Agua/fisiología , Plantones
17.
Zhong Yao Cai ; 39(5): 1075-8, 2016 May.
Artículo en Zh | MEDLINE | ID: mdl-30133192

RESUMEN

Objective: To investigate the specific biotransformation product of ginsenoside Rb1 of Panax notoginseng saponins( PNS) by an individual plant endophyte. Methods: The endophytes of an invasive plant were selected as the screening targets of active conversion strains. The chromatography and high performance liquid chromatography were used to detemine the metabolite. Results: Totally, an active strain of conversion of ginsenoside Rb1 were achieved. The strain can specifically convert ginsenoside Rb1 of PNS to ginsenoside Rd and rare saponin ginsenoside C-K,with the conversion rate of 11. 62% of ginsenoside C-K by fermentation for 12 d. Conclusion: This transformation can obviously increase the content of minor ginsenoside C-K in PNS,and it is expected to be a new way to obtain the active saponin ginsenoside C-K in quantity.


Asunto(s)
Panax notoginseng , Biotransformación , Cromatografía Líquida de Alta Presión , Endófitos , Ginsenósidos , Saponinas
18.
Zhongguo Zhong Yao Za Zhi ; 41(11): 2036-2043, 2016 Jun.
Artículo en Zh | MEDLINE | ID: mdl-28901098

RESUMEN

Chitinases(EC3.2.1.14), which are present in various organisms, catalyze the hydrolytic cleavage of chitin and play a vital role in plant defense mechanisms against fungal pathogens.In addition, the chitinases are well known to regulate plant growth and development and are involved in programmed cell death(PCD).A chitinase expressed sequence tag(EST) was isolated from Panax notoginseng, and the full-length cDNA of this EST was cloned with the method of rapid amplification of cDNA ends and named as PnCHI1. PnCHI1 was 1 022 bp in length and contained an intact open reading frame(ORF) of 822 bp, a 26 bp 5'-untranslated region(UTR), and a 174 bp 3'-UTR.The predicted protein of PnCHI1 with 273 amino acid residues belongs to glycoside hydrolase family 19 and fell into the class IV of chitinases through phylogenetic analysis.QRT-PCR analysis showed that the expression of PnCHI1 was induced by methyl jasmonate, ethylene, H2O2, and salicylic acid.PnCHI1 was quickly induced after inoculation with Alternaria panax.Moreover, the expression level of PnCHI1 was increased after pretreatment with methyl jasmonate, and then the transcription level of PnCHI1was sharp increased after inoculation with Fusarium solani,and the highest transcription level was achieved at 4 h post inoculation.But the expression level of PnCHI1 in the sterile water pretreated P.notoginseng was increased gradually after inoculation with F.solani, and the highest expression level was achieved at 48 h post inoculation.All the results of present study indicated that PnCHI1 was involved in defense response of P.notoginseng against the F.solani and A.panax.


Asunto(s)
Quitinasas/genética , Panax notoginseng/enzimología , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Clonación Molecular , Fusarium , Peróxido de Hidrógeno , Panax notoginseng/genética , Filogenia
19.
Zhongguo Zhong Yao Za Zhi ; 41(5): 776-785, 2016 Mar.
Artículo en Zh | MEDLINE | ID: mdl-28875627

RESUMEN

Through the markets investigations and literature surveying, this paper investigates and analyzes the qualitative characteristics and commodity condition of Panax notoginseng. And the samples collected from market and origin were analyzed in order to revise the commodity specification and grade standard of P. notoginseng combined with production practice. In this paper, the authors divide the P. notoginseng into 4 commodity specification which are root (including Cunqi and Dongqi ), Rhizome and rootlet according to different parts and harvest time. And the root were divided into 8 grade which are 20, 30, 40, 60, 80, 120, countless and substandard. The density and internal components between the different commodity specification and grade of P. notoginseng were also compared. As well as the effect of different producing area, cultivation years and harvesting time on the commodity specification and grade of P. notoginseng were researched. On this basis, we revise and improve the commodity specification and grade standard of P. notoginseng. Moreover, we suggest the quality control indexes of P. notoginseng should be developed according to the different medicinal part and commodity specification in CHP. In order to guide the standardized production of traditional Chinese medicine and ensure the quality of medicinal materials, the cultivation years and density of each medicinal materials should also be indicated in CHP.


Asunto(s)
Medicamentos Herbarios Chinos/química , Panax notoginseng/química , Panax notoginseng/clasificación , Medicamentos Herbarios Chinos/economía , Medicina Tradicional China/economía , Medicina Tradicional China/normas , Raíces de Plantas/química , Raíces de Plantas/clasificación , Control de Calidad
20.
Zhongguo Zhong Yao Za Zhi ; 40(20): 4026-30, 2015 Oct.
Artículo en Zh | MEDLINE | ID: mdl-27062822

RESUMEN

To build a reversed phase ion-pair chromatography to determination content of Dencichine from Panax notoginseng. Using Tetrabutyl ammonium hydroxide ions by the combination of reagent and HPLC method without derivatization to test the content of dencichine directly. The optimum conditions of supersonic extraction were solid-to-liquid ratio 1: 20, Continuous ultrasonic extraction: twice, each time 15 minutes; 3,500 r · min⁻¹, then centrifuging 15 minutes. Dencichine in different age, place, part and the different Processing mode were examined. The method is simple with sound separation degree and stability, which can facilitate the determination of dencichine content directly and provide the basis in quality standard of raw material.


Asunto(s)
Aminoácidos Diaminos/análisis , Cromatografía de Fase Inversa/métodos , Medicamentos Herbarios Chinos/análisis , Panax notoginseng/química , Raíces de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA