Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 127, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520008

RESUMEN

The rapid proliferation of tumors is highly dependent on the nutrition supply of blood vessels. Cutting off the nutrient supply to tumors is an effective strategy for cancer treatment, known as starvation therapy. Although various hydrogel-based biomaterials have been developed for starvation therapy through glucose consumption or intravascular embolization, the limitations of single-mode starvation therapy hinder their therapeutic effects. Herein, we propose a dual-function nutrition deprivation strategy that can block the nutrients delivery through extravascular gelation shrinkage and inhibit neovascularization through angiogenesis inhibitors based on a novel NIR-responsive nanocomposite hydrogel. CuS nanodots-modified MgAl-LDH nanosheets loaded with angiogenesis inhibitor (sorafenib, SOR) are incorporated into the poly(n-isopropylacrylamide) (PNIPAAm) hydrogel by radical polymerization to obtain the composite hydrogel (SOR@LDH-CuS/P). The SOR@LDH-CuS/P hydrogel can deliver hydrophobic SOR with a NIR-responsive release behavior, which could decrease the tumor vascular density and accelerate cancer cells apoptosis. Moreover, the SOR@LDH-CuS/P hydrogel exhibits higher (3.5 times) compressive strength than that of the PNIPAAm, which could squeeze blood vessels through extravascular gelation shrinkage. In vitro and in vivo assays demonstrate that the interruption of nutrient supply by gelation shrinkage and the prevention of angiogenesis by SOR is a promising strategy to inhibit tumor growth for multimode starvation therapy.


Asunto(s)
Hidrogeles , Neoplasias , Humanos , Hidrogeles/química , Inhibidores de la Angiogénesis/farmacología , Angiogénesis , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico
2.
Nat Commun ; 13(1): 3384, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697679

RESUMEN

Although two-dimensional (2D) layered double hydroxides (LDHs) have been widely used as efficient nanoagents for biological diagnosis and treatment, they have been found to be inert as photosensitizers (PSs) for photodynamic therapy (PDT). Herein, we report the defect engineering of ultrathin 2D CoMo-LDH and NiMo-LDH nanosheets as highly active inorganic PSs for PDT in the third near-infrared (NIR-III) window. Hydrothermal-synthesized 2D CoMo-LDH and NiMo-LDH nanosheets are etched via a simple acid treatment to obtain defect-rich CoMo-LDH and NiMo-LDH nanosheets. Importantly, the defect-rich CoMo-LDH nanosheets exhibit much higher activity (~97 times) for generation of reactive oxygen species than that of the pristine CoMo-LDH nanosheets under a NIR-III 1567 nm laser irradiation. Therefore, after modification with polyethylene glycol, the defect-rich CoMo-LDH nanosheets can be used as an efficient inorganic PS for PDT to efficiently induce cancer cells apoptosis in vitro and eradicate tumors in vivo under 1567 nm laser irradiation.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Hidróxidos , Luz , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA