Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 24(14): 4006-23, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25882707

RESUMEN

Despite significant progress in the genetics of autism spectrum disorder (ASD), how genetic mutations translate to the behavioral changes characteristic of ASD remains largely unknown. ASD affects 1-2% of children and adults, and is characterized by deficits in verbal and non-verbal communication, and social interactions, as well as the presence of repetitive behaviors and/or stereotyped interests. ASD is clinically and etiologically heterogeneous, with a strong genetic component. Here, we present functional data from syngap1 and shank3 zebrafish loss-of-function models of ASD. SYNGAP1, a synaptic Ras GTPase activating protein, and SHANK3, a synaptic scaffolding protein, were chosen because of mounting evidence that haploinsufficiency in these genes is highly penetrant for ASD and intellectual disability (ID). Orthologs of both SYNGAP1 and SHANK3 are duplicated in the zebrafish genome and we find that all four transcripts (syngap1a, syngap1b, shank3a and shank3b) are expressed at the earliest stages of nervous system development with pronounced expression in the larval brain. Consistent with early expression of these genes, knockdown of syngap1b or shank3a cause common embryonic phenotypes including delayed mid- and hindbrain development, disruptions in motor behaviors that manifest as unproductive swim attempts, and spontaneous, seizure-like behaviors. Our findings indicate that both syngap1b and shank3a play novel roles in morphogenesis resulting in common brain and behavioral phenotypes.


Asunto(s)
Trastorno del Espectro Autista/genética , Encéfalo/embriología , Proteínas Activadoras de GTPasa/genética , Proteínas del Tejido Nervioso/genética , Organogénesis/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Proteínas Activadoras de ras GTPasa/genética , Animales , Bases de Datos Genéticas , Desarrollo Embrionario , Proteínas Activadoras de GTPasa/metabolismo , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Haploinsuficiencia , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
2.
Mol Cell Neurosci ; 68: 244-57, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26284979

RESUMEN

BACKGROUND: GABAergic synaptic transmission is known to play a critical role in the assembly of neuronal circuits during development and is responsible for maintaining the balance between excitatory and inhibitory signaling in the brain during maturation into adulthood. Importantly, defects in GABAergic neuronal function and signaling have been linked to a number of neurological diseases, including autism spectrum disorders, schizophrenia, and epilepsy. With patient-specific induced pluripotent stem cell (iPSC)-based models of neurological disease, it is now possible to investigate the disease mechanisms that underlie deficits in GABAergic function in affected human neurons. To that end, tools that enable the labeling and purification of viable GABAergic neurons from human pluripotent stem cells would be of great value. RESULTS: To address the need for tools that facilitate the identification and isolation of viable GABAergic neurons from the in vitro differentiation of iPSC lines, a cell type-specific promoter-driven fluorescent reporter construct was developed that utilizes the human vesicular GABA transporter (hVGAT) promoter to drive the expression of mCherry specifically in VGAT-expressing neurons. The transduction of iPSC-derived forebrain neuronal cultures with the hVGAT promoter-mCherry lentiviral reporter construct specifically labeled GABAergic neurons. Immunocytochemical analysis of hVGAT-mCherry expression cells showed significant co-labeling with the GABAergic neuronal markers for endogenous VGAT, GABA, and GAD67. Expression of mCherry from the VGAT promoter showed expression in several cortical interneuron subtypes to similar levels. In addition, an effective and reproducible protocol was developed to facilitate the fluorescent activated cell sorting (FACS)-mediated purification of high yields of viable VGAT-positive cells. CONCLUSIONS: These studies demonstrate the utility of the hVGAT-mCherry reporter construct as an effective tool for studying GABAergic neurons differentiated in vitro from human pluripotent stem cells. This approach could provide a means of obtaining large quantities of viable GABAergic neurons derived from disease-specific hiPSCs that could be used for functional assays or high-throughput screening of small molecule libraries.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Proteínas Luminiscentes/metabolismo , Células Madre Pluripotentes/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Calbindina 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Supervivencia Celular , Células Cultivadas , Citometría de Flujo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato Descarboxilasa/metabolismo , Humanos , Proteínas Luminiscentes/genética , Mutación/genética , Factor de Crecimiento Nervioso/farmacología , Parvalbúminas/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Prosencéfalo/citología , Somatostatina/metabolismo , Sinapsinas/metabolismo , Transfección , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteína Fluorescente Roja
3.
Hum Mol Genet ; 21(15): 3513-23, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22543975

RESUMEN

Autism spectrum disorders (ASDs) are highly heritable, yet relatively few associated genetic loci have been replicated. Copy number variations (CNVs) have been implicated in autism; however, the majority of loci contribute to <1% of the disease population. Therefore, independent studies are important to refine associated CNV regions and discover novel susceptibility genes. In this study, a genome-wide SNP array was utilized for CNV detection by two distinct algorithms in a European ancestry case-control data set. We identify a significantly higher burden in the number and size of deletions, and disrupting more genes in ASD cases. Moreover, 18 deletions larger than 1 Mb were detected exclusively in cases, implicating novel regions at 2q22.1, 3p26.3, 4q12 and 14q23. Case-specific CNVs provided further evidence for pathways previously implicated in ASDs, revealing new candidate genes within the GABAergic signaling and neural development pathways. These include DBI, an allosteric binder of GABA receptors, GABARAPL1, the GABA receptor-associated protein, and SLC6A11, a postsynaptic GABA transporter. We also identified CNVs in COBL, deletions of which cause defects in neuronal cytoskeleton morphogenesis in model vertebrates, and DNER, a neuron-specific Notch ligand required for cerebellar development. Moreover, we found evidence of genetic overlap between ASDs and other neurodevelopmental and neuropsychiatric diseases. These genes include glutamate receptors (GRID1, GRIK2 and GRIK4), synaptic regulators (NRXN3, SLC6A8 and SYN3), transcription factor (ZNF804A) and RNA-binding protein FMR1. Taken together, these CNVs may be a few of the missing pieces of ASD heritability and lead to discovering novel etiological mechanisms.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Variaciones en el Número de Copia de ADN , Adolescente , Algoritmos , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Receptores de GABA/genética , Adulto Joven
4.
Stem Cell Res ; 76: 103364, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422817

RESUMEN

The ATP-binding cassette, subfamily A (ABC1), member 7 (ABCA7) gene is associated with Alzheimer's disease (AD) risk in populations of African, Asian, and European ancestry1-5. Numerous ABCA7 mutations contributing to risk have been identified, including a 44 base pair deletion (rs142076058) specific to individuals of African ancestry and predicted to cause a frameshift mutation (p.Arg578Alafs) (Cukier et al., 2016). The UMi043-A human induced pluripotent stem cell line was derived from an African American individual with AD who is heterozygous for this deletion and is a resource to further investigate ABCA7 and how this African-specific deletion may influence disease pathology.


Asunto(s)
Enfermedad de Alzheimer , Línea Celular , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Negro o Afroamericano/genética , Células Madre Pluripotentes Inducidas/citología , Mutación
5.
Neurobiol Aging ; 131: 182-195, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37677864

RESUMEN

A missense variant in the tetratricopeptide repeat domain 3 (TTC3) gene (rs377155188, p.S1038C, NM_003316.4:c 0.3113C>G) was found to segregate with disease in a multigenerational family with late-onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing, and the resulting isogenic pair of iPSC lines was differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3-dimensional morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Enfermedad de Alzheimer/genética , Neuronas , Citoesqueleto de Actina , Enfermedades de Inicio Tardío , Prosencéfalo , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas
6.
bioRxiv ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37292815

RESUMEN

A missense variant in the tetratricopeptide repeat domain 3 ( TTC3 ) gene (rs377155188, p.S1038C, NM_003316.4:c.3113C>G) was found to segregate with disease in a multigenerational family with late onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing and the resulting isogenic pair of iPSC lines were differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3D morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant. Highlights: The AD risk variant TTC3 p.S1038C reduces the expression levels of TTC3 The variant modifies the expression of AD specific genes BACE1 , INPP5F , and UNC5C Neurons with the variant are enriched for genes in the PI3K-Akt pathwayiPSC-derived neurons with the alteration have increased neurite length and branchingThe variant interferes with actin cytoskeleton and is ameliorated by Cytochalasin D.

7.
NPJ Parkinsons Dis ; 8(1): 84, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768426

RESUMEN

We previously reported on two brothers who carry identical compound heterozygous PRKN mutations yet present with significantly different Parkinson's Disease (PD) clinical phenotypes. Juvenile cases demonstrate that PD is not necessarily an aging-associated disease. Indeed, evidence for a developmental component to PD pathogenesis is accumulating. Thus, we hypothesized that the presence of additional genetic modifiers, including genetic loci relevant to mesencephalic dopamine neuron development, could potentially contribute to the different clinical manifestations of the two brothers. We differentiated human-induced pluripotent stem cells (hiPSCs) derived from the two brothers into mesencephalic neural precursor cells and early postmitotic dopaminergic neurons and performed wholeexome sequencing and transcriptomic and metabolomic analyses. No significant differences in the expression of canonical dopamine neuron differentiation markers were observed. Yet our transcriptomic analysis revealed a significant downregulation of the expression of three neurodevelopmentally relevant cell adhesion molecules, CNTN6, CNTN4 and CHL1, in the cultures of the more severely affected brother. In addition, several HLA genes, known to play a role in neurodevelopment, were differentially regulated. The expression of EN2, a transcription factor crucial for mesencephalic dopamine neuron development, was also differentially regulated. We further identified differences in cellular processes relevant to dopamine metabolism. Lastly, wholeexome sequencing, transcriptomics and metabolomics data all revealed differences in glutathione (GSH) homeostasis, the dysregulation of which has been previously associated with PD. In summary, we identified genetic differences which could potentially, at least partially, contribute to the discordant clinical PD presentation of the two brothers.

8.
PLoS Genet ; 4(9): e1000179, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18773074

RESUMEN

The levels of methyl-CpG-binding protein 2 (MeCP2) are critical for normal post-natal development and function of the nervous system. Loss of function of MeCP2, a transcriptional regulator involved in chromatin remodeling, causes classic Rett syndrome (RTT) as well as other related conditions characterized by autism, learning disabilities, or mental retardation. Increased dosage of MeCP2 also leads to clinically similar neurological disorders and mental retardation. To identify molecular mechanisms capable of compensating for altered MeCP2 levels, we generated transgenic Drosophila overexpressing human MeCP2. We find that MeCP2 associates with chromatin and is phosphorylated at serine 423 in Drosophila, as is found in mammals. MeCP2 overexpression leads to anatomical (i.e., disorganized eyes, ectopic wing veins) and behavioral (i.e., motor dysfunction) abnormalities. We used a candidate gene approach to identify genes that are able to compensate for abnormal phenotypes caused by MeCP2 increased activity. These genetic modifiers include other chromatin remodeling genes (Additional sex combs, corto, osa, Sex combs on midleg, and trithorax), the kinase tricornered, the UBE3A target pebble, and Drosophila homologues of the MeCP2 physical interactors Sin3a, REST, and N-CoR. These findings demonstrate that anatomical and behavioral phenotypes caused by MeCP2 activity can be ameliorated by altering other factors that might be more amenable to manipulation than MeCP2 itself.


Asunto(s)
Drosophila/embriología , Drosophila/genética , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Animales , Animales Modificados Genéticamente , Cromatina/metabolismo , Drosophila/metabolismo , Humanos , Microscopía Electrónica de Rastreo , Fenotipo , Fosforilación , Serina/genética , Serina/metabolismo
9.
Am J Med Genet B Neuropsychiatr Genet ; 156B(4): 493-501, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21480499

RESUMEN

Copy number variations (CNVs) play a crucial role in the intricate genetics of autism spectrum disorders. A region on chromosome 15q24 vulnerable to both deletions and duplications has been previously implicated in a range of phenotypes including autism, Asperger's syndrome, delayed development, and mild to severe mental retardation. Prior studies have delineated a minimal critical region of approximately 1.33 Mb. In this study, a multiplex autism family was evaluated for CNVs using genotyping data from the Illumina 1 M BeadChip and analyzed with the PennCNV algorithm. Variants were then identified that co-segregate with autism features in this family. Here, we report autistic first cousins who carry two microduplications concordant with disease. Both duplications were inherited maternally and found to be identical by descent. The first is an approximately 10,000 base pair microduplication within the minimal region on 15q24 that falls across a single gene, ubiquitin-like 7. This is the smallest duplication in the region to result in a neuropsychiatric disorder, potentially narrowing the critical region for susceptibility to developmental and autism spectrum disorders. The second is a novel, 352 kb tandem duplication on 7p21 that replicates part of the neurexophilin 1 and islet cell autoantigen 1 genes. The breakpoint junction falls within the intronic regions of these genes and demonstrates a microhomology of four base pairs. Each of these microduplications may contribute to the complex etiology of autism spectrum disorders.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Cromosomas Humanos Par 15 , Cromosomas Humanos Par 7 , Variaciones en el Número de Copia de ADN , Autoantígenos/genética , Niño , Trastornos Generalizados del Desarrollo Infantil/etiología , Familia , Glicoproteínas/genética , Humanos , Neuropéptidos/genética , Ubiquitinas/genética
10.
Stem Cell Res ; 52: 102258, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33626494

RESUMEN

The UMi028-A-2 human induced pluripotent stem cell line carries a homozygous mutation (rs377155188, C>G, p.S1038C) in the tetratricopeptide repeat domain 3 (TTC3) gene that was introduced via CRISPR/Cas9 genome editing. The line was originally derived from a neurologically normal male and has been thoroughly characterized following editing. The p.S1038C variant has been shown to potentially contribute to the risk of late onset Alzheimer's disease and is a resource to further investigate the consequences of TTC3 and this alteration in disease pathology.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/genética , Sistemas CRISPR-Cas/genética , Línea Celular , Edición Génica , Humanos , Masculino , Ubiquitina-Proteína Ligasas
11.
Neurobiol Aging ; 104: 115.e1-115.e7, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33902942

RESUMEN

The genetic admixture of Caribbean Hispanics provides an opportunity to discover novel genetic factors in Alzheimer disease (AD). We sought to identify genetic variants for AD through a family-based design using the Puerto Rican (PR) Alzheimer Disease Initiative (PRADI). Whole-genome sequencing (WGS) and parametric linkage analysis were performed for 100 individuals from 23 multiplex PRADI families. Variants were prioritized by minor allele frequency (<0.01), functional potential [combined annotation dependent depletion score (CADD) >10], and co-segregation with AD. Variants were further ranked using an independent PR case-control WGS dataset (PR10/66). A genome-wide significant linkage peak was found in 9p21 with a heterogeneity logarithm of the odds score (HLOD) >5.1, which overlaps with an AD linkage region from two published independent studies. The region harbors C9orf72, but no expanded repeats were observed in the families. Seven variants prioritized by the PRADI families also displayed evidence for association in the PR10/66 (p < 0.05), including a missense variant in UNC13B. Our study demonstrated the importance of family-based design and WGS in genetic study of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Cromosomas Humanos Par 9/genética , Ligamiento Genético , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Proteína C9orf72/genética , Hispánicos o Latinos/genética , Humanos , Proteínas del Tejido Nervioso/genética , Secuenciación Completa del Genoma
12.
Neurogenetics ; 11(3): 291-303, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19921286

RESUMEN

Misregulation of the methyl-CpG-binding protein 2 (MECP2) gene has been found to cause a myriad of neurological disorders including autism, mental retardation, seizures, learning disabilities, and Rett syndrome. We hypothesized that mutations in other members of the methyl-CpG-binding domain (MBD) family may also cause autistic features in individuals. We evaluated 226 autistic individuals for alterations in the four genes most homologous to MECP2: MBD1, MBD2, MBD3, and MBD4. A total of 46 alterations were identified in the four genes, including ten missense changes and two deletions that alter coding sequence. Several are either unique to our autistic population or cosegregate with affected individuals within a family, suggesting a possible relation of these variations to disease etiology. Variants include a R23M alteration in two affected half brothers which falls within the MBD domain of the MBD3 protein, as well as a frameshift in MBD4 that is predicted to truncate almost half of the protein. These results suggest that rare cases of autism may be influenced by mutations in members of the dynamic MBD protein family.


Asunto(s)
Trastorno Autístico/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Proteína 2 de Unión a Metil-CpG/genética , Factores de Transcripción/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Islas de CpG , Femenino , Mutación del Sistema de Lectura , Variación Genética , Humanos , Masculino , Mutación Missense , Eliminación de Secuencia , Adulto Joven
13.
Autism Res ; 13(4): 523-531, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32064789

RESUMEN

Whole exome sequencing and copy-number variant analysis was performed on a family with three brothers diagnosed with autism. Each of the siblings shares an alteration in the nuclear receptor subfamily 3 group C member 2 (NR3C2) gene that is predicted to result in a stop-gain mutation (p.Q919X) in the mineralocorticoid receptor (MR) protein. This variant was maternally inherited and provides further evidence for a connection between the NR3C2 and autism. Interestingly, the NR3C2 gene encodes the MR protein, a steroid hormone-regulated transcription factor that acts in the hypothalamic-pituitary-adrenal axis and has been connected to stress and anxiety, both of which are features often seen in individuals with autism. Autism Res 2020, 13: 523-531. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Given the complexity of the genetics underlying autism, each gene contributes to risk in a relatively small number of individuals, typically less than 1% of all autism cases. Whole exome sequencing of three brothers with autism identified a rare variant in the nuclear receptor subfamily 3 group C member 2 gene that is predicted to strongly interfere with its normal function. This gene encodes the mineralocorticoid receptor protein, which plays a role in how the body responds to stress and anxiety, features that are often elevated in people diagnosed with autism. This study adds further support to the relevance of this gene as a risk factor for autism.


Asunto(s)
Trastorno del Espectro Autista/genética , Sistema Hipotálamo-Hipofisario , Mutación/genética , Sistema Hipófiso-Suprarrenal , Receptores de Mineralocorticoides/genética , Preescolar , Humanos , Masculino , Hermanos
14.
Ann Hum Genet ; 73(Pt 3): 263-73, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19456320

RESUMEN

Although autism is one of the most heritable neuropsychiatric disorders, its underlying genetic architecture has largely eluded description. To comprehensively examine the hypothesis that common variation is important in autism, we performed a genome-wide association study (GWAS) using a discovery dataset of 438 autistic Caucasian families and the Illumina Human 1M beadchip. 96 single nucleotide polymorphisms (SNPs) demonstrated strong association with autism risk (p-value < 0.0001). The validation of the top 96 SNPs was performed using an independent dataset of 487 Caucasian autism families genotyped on the 550K Illumina BeadChip. A novel region on chromosome 5p14.1 showed significance in both the discovery and validation datasets. Joint analysis of all SNPs in this region identified 8 SNPs having improved p-values (3.24E-04 to 3.40E-06) than in either dataset alone. Our findings demonstrate that in addition to multiple rare variations, part of the complex genetic architecture of autism involves common variation.


Asunto(s)
Trastorno Autístico/genética , Cromosomas Humanos Par 5/genética , Estudio de Asociación del Genoma Completo , Adolescente , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Linaje , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Adulto Joven
15.
Anal Biochem ; 386(2): 288-90, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19121619

RESUMEN

The recent implication of genomic copy number variations (CNVs) in multiple human genetic disorders has led to increased interest in CNV discovery technologies. There is a growing consensus that, in addition to the method used for detection, at least one additional technology should be employed for validation. Real-time quantitative polymerase chain reaction (qPCR) analysis, incorporating a normal (2N) copy number standard, is commonly used as a means of validating CNVs. Whereas it has previously been reported that formalin-fixed paraffin-embedded (FFPE) DNA samples can yield spurious CNV calls in real-time qPCR assays, here we report that sample degradation under standard laboratory storage conditions generates a significant increase in false-positive CNV results. Results suggest the possibility of biased degradation among genomic regions and emphasize the need to assess sample integrity immediately prior to real-time qPCR experiments.


Asunto(s)
Variación Genética , Genoma Humano , Reacción en Cadena de la Polimerasa , Reacciones Falso Positivas , Dosificación de Gen , Humanos , Sensibilidad y Especificidad
16.
Sci Rep ; 8(1): 8423, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29849033

RESUMEN

Potentially pathogenic alterations have been identified in individuals with autism spectrum disorders (ASDs) within a variety of key neurodevelopment genes. While this hints at a common ASD molecular etiology, gaps persist in our understanding of the neurodevelopmental mechanisms impacted by genetic variants enriched in ASD patients. Induced pluripotent stem cells (iPSCs) can model neurodevelopment in vitro, permitting the characterization of pathogenic mechanisms that manifest during corticogenesis. Taking this approach, we examined the transcriptional differences between iPSC-derived cortical neurons from patients with idiopathic ASD and unaffected controls over a 135-day course of neuronal differentiation. Our data show ASD-specific misregulation of genes involved in neuronal differentiation, axon guidance, cell migration, DNA and RNA metabolism, and neural region patterning. Furthermore, functional analysis revealed defects in neuronal migration and electrophysiological activity, providing compelling support for the transcriptome analysis data. This study reveals important and functionally validated insights into common processes altered in early neuronal development and corticogenesis and may contribute to ASD pathogenesis.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/patología , Perfilación de la Expresión Génica , Neuronas/metabolismo , Adolescente , Señalización del Calcio , Diferenciación Celular , Movimiento Celular , Niño , Preescolar , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Neuronas/patología , Sinapsis/patología , Adulto Joven
18.
Artículo en Inglés | MEDLINE | ID: mdl-27882265

RESUMEN

Since the creation of induced Pluripotent Stem Cells (iPSCs) ten years ago, hundreds of publications have demonstrated their considerable impact on disease modeling and therapy. In this commentary, we will summarize key milestones, benefits and challenges in the iPSC field. Furthermore, we will highlight blood as an effective and easily accessible source for patient-specific iPSCs derivation in the context of work done in our laboratory and others.

19.
Neurol Genet ; 2(6): e116, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27822510

RESUMEN

OBJECTIVE: To characterize the clinical and molecular effect of mutations in the sortilin-related receptor (SORL1) gene. METHODS: We performed whole-exome sequencing in early-onset Alzheimer disease (EOAD) and late-onset Alzheimer disease (LOAD) families followed by functional studies of select variants. The phenotypic consequences associated with SORL1 mutations were characterized based on clinical reviews of medical records. Functional studies were completed to evaluate ß-amyloid (Aß) production and amyloid precursor protein (APP) trafficking associated with SORL1 mutations. RESULTS: SORL1 alterations were present in 2 EOAD families. In one, a SORL1 T588I change was identified in 4 individuals with AD, 2 of whom had parkinsonian features. In the second, an SORL1 T2134 alteration was found in 3 of 4 AD cases, one of whom had postmortem Lewy bodies. Among LOAD cases, 4 individuals with either SORL1 A528T or T947M alterations had parkinsonian features. Functionally, the variants weaken the interaction of the SORL1 protein with full-length APP, altering levels of Aß and interfering with APP trafficking. CONCLUSIONS: The findings from this study support an important role for SORL1 mutations in AD pathogenesis by way of altering Aß levels and interfering with APP trafficking. In addition, the presence of parkinsonian features among select individuals with AD and SORL1 mutations merits further investigation.

20.
Neurol Genet ; 2(1): e41, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27066578

RESUMEN

OBJECTIVE: The genetic risk architecture of Alzheimer disease (AD) is complex with single pathogenic mutations leading to early-onset AD, while both rare and common genetic susceptibility variants contribute to the more widespread late-onset AD (LOAD); we sought to discover novel genes contributing to LOAD risk. METHODS: Whole-exome sequencing and genome-wide genotyping were performed on 11 affected individuals in an extended family with an apparent autosomal dominant pattern of LOAD. Variants of interest were then evaluated in a large cohort of LOAD cases and aged controls. RESULTS: We detected a single rare, nonsynonymous variant shared in all 11 LOAD individuals, a missense change in the tetratricopeptide repeat domain 3 (TTC3) gene. The missense variant, rs377155188 (p.S1038C), is predicted to be damaging. Affecteds-only multipoint linkage analysis demonstrated that this region of TTC3 has a LOD score of 2.66 in this family. CONCLUSION: The TTC3 p.S1038C substitution may represent a segregating, rare LOAD risk variant. Previous studies have shown that TTC3 expression is consistently reduced in LOAD patients and negatively correlated with AD neuropathology and that TTC3 is a regulator of Akt signaling, a key pathway disrupted in LOAD. This study demonstrates how utilizing whole-exome sequencing in a large, multigenerational family with a high incidence of LOAD could reveal a novel candidate gene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA