Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytopathology ; 114(6): 1346-1355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669464

RESUMEN

Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut (Arachis hypogaea) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping population has been genotyped with the peanut 58K single-nucleotide polymorphism (SNP) array and phenotyped for LLS severity in the field for 3 years. Joint linkage-based quantitative trait locus (QTL) mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained up to 47.7%. A genome-wide association study identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 to 1,520 kb (184 kb) on chromosome B02 and from 1,026.9 to 1,793.2 kb (767 kb) on chromosome B03, designated as peanut LLS resistance loci, PLLSR-1 and PLLSR-2, respectively. PLLSR-1 contains 10 nucleotide-binding site leucine-rich repeat disease resistance genes. A nucleotide-binding site leucine-rich repeat disease resistance gene, Arahy.VKVT6A, was also identified on homoeologous chromosome A02. PLLSR-2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat, acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as nested association mapping for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.


Asunto(s)
Arachis , Mapeo Cromosómico , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Arachis/genética , Arachis/microbiología , Arachis/inmunología , Sitios de Carácter Cuantitativo/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Polimorfismo de Nucleótido Simple/genética , Fenotipo , Ligamiento Genético , Genotipo , Ascomicetos/fisiología , Ascomicetos/genética , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Cromosomas de las Plantas/genética , Marcadores Genéticos/genética
2.
Plant Dis ; 105(9): 2374-2379, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33656366

RESUMEN

In peanut (Arachis hypogaea) production, in-furrow applications of the premix combination of the succinate-dehydrogenase-inhibitor (SDHI) fungicide and nematicide fluopyram and the insecticide imidacloprid are used primarily for management of nematode pests and for preventing feeding damage on foliage caused by tobacco thrips (Frankliniella fusca). Fluopyram is also active against many fungal pathogens. However, the effect of in-furrow applications of fluopyram on early leaf spot (Passalora arachidicola) or late leaf spot (Nothopassalora personata) has not been characterized. The purpose of this study was to determine the effects of in-furrow applications of fluopyram + imidacloprid or fluopyram alone on leaf spot epidemics. Field experiments were conducted in Tifton, GA in 2015, 2016, and 2018 to 2020. In all experiments, in-furrow applications of fluopyram + imidacloprid provided extended suppression of early leaf spot and late leaf spot epidemics compared with the nontreated control. In 2020, there was no difference between the effects of fluopyram + imidacloprid and fluopyram alone on leaf spot epidemics. Results indicated that fluopyram could complement early-season leaf spot management programs. Use of in-furrow applications of fluopyram should be considered as an SDHI fungicide application for resistance management purposes.


Asunto(s)
Arachis , Fungicidas Industriales , Benzamidas , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control , Piridinas/farmacología
3.
Plant Dis ; 105(10): 2946-2954, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33779250

RESUMEN

Frogeye leaf spot (FLS), caused by the fungal pathogen Cercospora sojina K. Hara, is a foliar disease of soybean (Glycine max L. [Merr.]) responsible for yield reductions throughout the major soybean-producing regions of the world. In the United States, management of FLS relies heavily on the use of resistant cultivars and in-season fungicide applications, specifically within the class of quinone outside inhibitors (QoIs), which has resulted in the development of fungicide resistance in many states. In 2018 and 2019, 80 isolates of C. sojina were collected from six counties in Georgia and screened for QoI fungicide resistance using molecular and in vitro assays, with resistant isolates being confirmed from three counties. Additionally, 50 isolates, including a "baseline isolate" with no prior fungicide exposure, were used to determine the percent reduction of mycelial growth to two fungicides, azoxystrobin and pyraclostrobin, at six concentrations: 0.0001, 0.001, 0.01, 0.1, 1, and 10 µg ml-1. Mycelial growth observed for resistant isolates varied significantly from both sensitive isolates and baseline isolate for azoxystrobin concentrations of 10, 1, 0.1, and 0.01 µg ml-1 and for pyraclostrobin concentrations of 10, 1, 0.1, 0.01, and 0.001 µg ml-1. Moreover, 40 isolates were used to evaluate pathogen race on six soybean differential cultivars by assessing susceptible or resistant reactions. Isolate reactions suggested 12 races of C. sojina present in Georgia, 4 of which have not been previously described. Species richness indicators (rarefaction and abundance-based coverage estimators) indicated that within-county C. sojina race numbers were undersampled in this study, suggesting the potential for the presence of either additional undescribed races or known but unaccounted for races in Georgia. However, no isolates were pathogenic on 'Davis', a differential cultivar carrying the Rcs3 resistance allele, suggesting that the gene is still an effective source of resistance in Georgia.


Asunto(s)
Ascomicetos , Glycine max , Ascomicetos/genética , Cercospora , Georgia , Estrobilurinas , Estados Unidos
4.
Plant Biotechnol J ; 18(6): 1457-1471, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31808273

RESUMEN

Multiparental genetic mapping populations such as nested-association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida-07, were used for dissecting genetic control of 100-pod weight (PW) and 100-seed weight (SW) in peanut. Two high-density SNP-based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida-07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida-07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP-trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida-07 for PW and SW, respectively. These significant STAs were co-localized, suggesting that PW and SW are co-regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high-resolution trait mapping in peanut.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Arachis/genética , Mapeo Cromosómico , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Fenotipo , Sitios de Carácter Cuantitativo/genética , Semillas/genética
5.
Phytopathology ; 110(6): 1199-1207, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32133919

RESUMEN

Management of disease affecting peanut in the southeastern United States has benefited from extensive field research identifying disease-associated risk factors since the 1990s. An assessment of risk factors associated with tomato spotted wilt (TSW), caused by tomato spotted wilt virus and spread exclusively by thrips, is available to growers through Peanut Rx, a tool developed to inform peanut management decisions. Peanut Rx provides an assessment of relative TSW risk as an index. The assessment provides information about the relative degree to which a field characterized by a specified suite of practices is at risk of crop loss caused by TSW. Loss results when infection occurs, and infection rates are determined, in part, by factors outside a grower's control, primarily the abundance of dispersing, viruliferous thrips. In this study, we incorporated meteorological variables useful for predicting thrips dispersal, increasing the robustness of the Peanut Rx framework in relation to variation in the weather. We used data from field experiments and a large grower survey to estimate the relationships between weather and TSW risk mediated by thrips vectors, and developed an addition to Peanut Rx that proved informative and easy to implement. The expected temporal occurrence of major thrips flights, as a function of heat and precipitation, was translated into the existing risk-point system of Peanut Rx. Results from the grower survey further demonstrated the validity of Peanut Rx for guiding growers' decisions to minimize risk of TSW.


Asunto(s)
Arachis , Tospovirus , Animales , Enfermedades de las Plantas , Medición de Riesgo , Sudeste de Estados Unidos
6.
Plant Dis ; 103(5): 990-995, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30893024

RESUMEN

Field trials were conducted in 2015 and 2016 in Tifton, GA to determine the effects of planting dates (24 and 27 April, 4, 11, 19, and 26 May 2015; and 11, 18, and 25 April and 2, 9, and 16 May 2016), peanut (Arachis hypogaea) cultivar (Georgia-06G and Georgia-12Y), and seed treatment (nontreated and treated with azoxystrobin, fludioxonil, and mefenoxam) on epidemics of late leaf spot (Nothopassalora personata), plant populations, and peanut yield. Final severity and AUDPC of late leaf spot increased with later planting dates in both years. For most planting dates in 2015 and the final planting date in 2016, final leaf spot severity and AUDPC were lower for Georgia-12Y than for Georgia-06G. Seed treatment increased plant populations for the 27 April and 4 May planting dates in 2015 and across all other treatments in 2016. Yields were higher for Georgia-12Y than for Georgia-06G in both years. In 2015, yields of both cultivars decreased according to linear functions of day of year of planting date, but there was no effect of planting date on yield in 2016. The combination of early planting with Georgia-12Y shows potential utility for management of leaf spot in situations such as organic production where fungicide use is minimal.


Asunto(s)
Arachis , Ascomicetos , Fungicidas Industriales , Arachis/clasificación , Arachis/microbiología , Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Fungicidas Industriales/farmacología , Georgia , Especificidad de la Especie , Factores de Tiempo
7.
Plant Dis ; 103(12): 3226-3233, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31573431

RESUMEN

Previous research has demonstrated the efficacy of prescription fungicide programs, based upon Peanut Rx, to reduce combined effects of early leaf spot (ELS), caused by Passalora arachidicola (Cercospora arachidicola), and late leaf spot (LLS), caused by Nothopassalora personata (syn. Cercosporidium personatum), but the potential of Peanut Rx to predict each disease has never been formally evaluated. From 2010 to 2016, non-fungicide-treated peanut plots in Georgia and Florida were sampled to monitor the development of ELS and LLS. This resulted in 168 cases (unique combinations of Peanut Rx risk factors) with associated total leaf spot risk points ranging from 40 to 100. Defoliation ranged from 13.9 to 100%, and increased significantly with increasing total risk points (conditional R2 = 0.56; P < 0.001). Leaf spot onset (time in days after planting [DAP] when either leaf spot reached 1% lesion incidence), ELS onset, and LLS onset ranged from 29 to 140, 29 to 142, and 50 to 143 DAP, respectively, and decreased significantly with increasing risk points. Standardized AUDPC of ELS was significantly affected by risk points (conditional R2 = 0.53, P < 0.001), but not for LLS. After removing redundant Peanut Rx factors, planting date, rotation, historical leaf spot prevalence, cultivar, and field history were used as fixed effects in mixed effect regression models to evaluate their contribution to leaf spot, ELS or LLS prediction. Results from mixed effects regression confirmed that the selected Peanut Rx risk factors contributed to the variability of at least one measurement of development of combined or separate epidemics of ELS and LLS, but not all factors affected ELS and LLS equally. Historical leaf spot prevalence, a new potential preplant risk factor, was a consistent predictor of the dominant disease(s) observed in the field. Results presented here demonstrate that Peanut Rx is a very effective tool for predicting leaf spot onset regardless of which leaf spot is predominant, but also suggest that associated risk does not reflect the same development for each disease. These data will be useful for refining thresholds for differentiating high, moderate, and low risk fields, and reevaluating the timing of fungicide applications in reduced input programs with respect to disease onset.


Asunto(s)
Arachis , Ascomicetos , Agricultura , Arachis/microbiología , Ascomicetos/fisiología , Florida , Fungicidas Industriales , Georgia , Factores de Riesgo , Estaciones del Año
8.
Plant Biotechnol J ; 16(11): 1954-1967, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29637729

RESUMEN

Whole-genome resequencing (WGRS) of mapping populations has facilitated development of high-density genetic maps essential for fine mapping and candidate gene discovery for traits of interest in crop species. Leaf spots, including early leaf spot (ELS) and late leaf spot (LLS), and Tomato spotted wilt virus (TSWV) are devastating diseases in peanut causing significant yield loss. We generated WGRS data on a recombinant inbred line population, developed a SNP-based high-density genetic map, and conducted fine mapping, candidate gene discovery and marker validation for ELS, LLS and TSWV. The first sequence-based high-density map was constructed with 8869 SNPs assigned to 20 linkage groups, representing 20 chromosomes, for the 'T' population (Tifrunner × GT-C20) with a map length of 3120 cM and an average distance of 1.45 cM. The quantitative trait locus (QTL) analysis using high-density genetic map and multiple season phenotyping data identified 35 main-effect QTLs with phenotypic variation explained (PVE) from 6.32% to 47.63%. Among major-effect QTLs mapped, there were two QTLs for ELS on B05 with 47.42% PVE and B03 with 47.38% PVE, two QTLs for LLS on A05 with 47.63% and B03 with 34.03% PVE and one QTL for TSWV on B09 with 40.71% PVE. The epistasis and environment interaction analyses identified significant environmental effects on these traits. The identified QTL regions had disease resistance genes including R-genes and transcription factors. KASP markers were developed for major QTLs and validated in the population and are ready for further deployment in genomics-assisted breeding in peanut.


Asunto(s)
Arachis/genética , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Genoma de Planta/genética , Arachis/inmunología , Mapeo Cromosómico , Genes de Plantas/fisiología
9.
J Gen Virol ; 98(8): 2156-2170, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28741996

RESUMEN

Persistent propagative viruses maintain intricate interactions with their arthropod vectors. In this study, we investigated the transcriptome-level responses associated with a persistent propagative phytovirus infection in various life stages of its vector using an Illumina HiSeq sequencing platform. The pathosystem components included a Tospovirus, Tomato spotted wilt virus (TSWV), its insect vector, Frankliniella fusca (Hinds), and a plant host, Arachis hypogaea (L.). We assembled (de novo) reads from three developmental stage groups of virus-exposed and non-virus-exposed F. fusca into one transcriptome consisting of 72 366 contigs and identified 1161 differentially expressed (DE) contigs. The number of DE contigs was greatest in adults (female) (562) when compared with larvae (first and second instars) (395) and pupae (pre- and pupae) (204). Upregulated contigs in virus-exposed thrips had blastx annotations associated with intracellular transport and virus replication. Upregulated contigs were also assigned blastx annotations associated with immune responses, including apoptosis and phagocytosis. In virus-exposed larvae, Blast2GO analysis identified functional groups, such as multicellular development with downregulated contigs, while reproduction, embryo development and growth were identified with upregulated contigs in virus-exposed adults. This study provides insights into differences in transcriptome-level responses modulated by TSWV in various life stages of an important vector, F. fusca.


Asunto(s)
Proteínas de Insectos/genética , Insectos Vectores/crecimiento & desarrollo , Insectos Vectores/genética , Enfermedades de las Plantas/virología , Thysanoptera/crecimiento & desarrollo , Thysanoptera/genética , Tospovirus/fisiología , Animales , Proteínas de Insectos/metabolismo , Insectos Vectores/virología , Larva/genética , Larva/crecimiento & desarrollo , Larva/virología , Thysanoptera/virología , Tospovirus/genética , Transcriptoma
10.
Plant Dis ; 101(11): 1843-1850, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30677310

RESUMEN

Peanut (Arachis hypogaea) cultivars with resistance or tolerance to Cercospora arachidicola and/or Cercosporidium personatum, the causes of early and late leaf spot, respectively, are needed for organic production in the southeastern U.S. To determine the potential of new breeding lines for use in such production systems, field experiments were conducted in Tifton, GA, in 2014 and 2015 in which nine breeding lines and two cultivars, Georgia-06G and Georgia-12Y, were grown without foliar fungicide applications. In one set of trials, cultivar Georgia-12Y and most of the breeding lines evaluated had early season vigor ratings, early-season canopy width measurements, final plant populations, and pod yield that were greater than those of standard cultivar Georgia-06G. In those trials, final late leaf spot Florida scale ratings were lower and canopy reflectance measured as the normalized difference vegetation index (NDVI), was higher all the breeding lines than those of Georgia-06G. In another set of trials, two of those same breeding lines had final late leaf spot ratings similar to those of Georgia-12Y in 2014, whereas in 2015, six of those breeding lines had final leaf spot ratings that were lower than those of Georgia-12Y. Yields were similar for Georgia-12Y and all the breeding lines in the Gibbs Farm trials. Across years and breeding lines at the Lang Farm, the relationship between visual estimates of defoliation and NDVI was described by a two sector piecewise regression with NDVI decreasing more rapidly with increasing defoliation above approximately 89%. The utility of NDVI for spot comparisons among breeding lines appears to be limited to situations where there are differences in defoliation. Georgia-12Y and multiple breeding lines evaluated show potential for use in situations such as organic production where acceptable fungicides available for seed treatment and leaf spot control are limited.


Asunto(s)
Arachis , Fitomejoramiento , Enfermedades de las Plantas , Arachis/microbiología , Fungicidas Industriales , Enfermedades de las Plantas/genética
11.
Entomol Exp Appl ; 162(1): 19-29, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30046183

RESUMEN

Feeding damage to seedling cotton and peanut inflicted by adult and immature thrips may result in stunted growth and delayed maturity. Furthermore, adult thrips can transmit Tomato spotted wilt virus (TSWV) to seedling peanut, which reduces plant growth and yield. The objective of this research was to assess the efficacy of inert particle films, calcium carbonate or kaolin, in combination with conservation tillage, to reduce adult and immature thrips counts in cotton and peanut crops. Planting cotton or peanut into strip tillage utilizing a rolled rye winter cover crop significantly reduced immature thrips counts. Furthermore, plant damage ratings in cotton as well as TSWV incidence in peanut significantly decreased under conservation tillage. Aboveground cotton biomass and plant stand in cotton and peanut were unaffected by calcium carbonate or kaolin particle film applications. Within each week, immature thrips counts were unaffected by particle films, regardless of application rate. In cotton plots treated with kaolin, total Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) counts summed across weeks were significantly greater compared to the untreated control. For adult F. fusca counts at 3 weeks after planting, an interaction between tillage and particle film treatments was observed with fewer adult thrips in particle film and strip tillage treated peanut. Similarly, reduced TSWV incidence was observed in particle film-treated peanut grown using conservation tillage. Neither cotton nor peanut yields were affected by particle film treatments.

12.
J Integr Plant Biol ; 58(5): 452-65, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26178804

RESUMEN

Cultivated peanut is grown worldwide as rich-source of oil and protein. A broad genetic base is needed for cultivar improvement. The objectives of this study were to develop highly informative simple sequence repeat (SSR) markers and to assess the genetic diversity and population structure of peanut cultivars and breeding lines from different breeding programs in China, India and the US. A total of 111 SSR markers were selected for this study, resulting in a total of 472 alleles. The mean values of gene diversity and polymorphic information content (PIC) were 0.480 and 0.429, respectively. Country-wise analysis revealed that alleles per locus in three countries were similar. The mean gene diversity in the US, China and India was 0.363, 0.489 and 0.47 with an average PIC of 0.323, 0.43 and 0.412, respectively. Genetic analysis using the STRUCTURE divided these peanut lines into two populations (P1, P2), which was consistent with the dendrogram based on genetic distance (G1, G2) and the clustering of principal component analysis. The groupings were related to peanut market types and the geographic origin with a few admixtures. The results could be used by breeding programs to assess the genetic diversity of breeding materials to broaden the genetic base and for molecular genetics studies.


Asunto(s)
Arachis/genética , Cruzamiento , Variación Genética , Repeticiones de Microsatélite/genética , China , Análisis por Conglomerados , Análisis Factorial , Marcadores Genéticos , Genética de Población , India , Filogenia , Polimorfismo Genético , Análisis de Componente Principal , Estados Unidos
13.
BMC Genet ; 15: 133, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25491595

RESUMEN

BACKGROUND: Peanut is one of the major source for human consumption worldwide and its seed contain approximately 50% oil. Improvement of oil content and quality traits (high oleic and low linoleic acid) in peanut could be accelerated by exploiting linked markers through molecular breeding. The objective of this study was to identify QTLs associated with oil content, and estimate relative contribution of FAD2 genes (ahFAD2A and ahFAD2B) to oil quality traits in two recombinant inbred line (RIL) populations. RESULTS: Improved genetic linkage maps were developed for S-population (SunOleic 97R × NC94022) with 206 (1780.6 cM) and T-population (Tifrunner × GT-C20) with 378 (2487.4 cM) marker loci. A total of 6 and 9 QTLs controlling oil content were identified in the S- and T-population, respectively. The contribution of each QTL towards oil content variation ranged from 3.07 to 10.23% in the S-population and from 3.93 to 14.07% in the T-population. The mapping positions for ahFAD2A (A sub-genome) and ahFAD2B (B sub-genome) genes were assigned on a09 and b09 linkage groups. The ahFAD2B gene (26.54%, 25.59% and 41.02% PVE) had higher phenotypic effect on oleic acid (C18:1), linoleic acid (C18:2), and oleic/linoleic acid ratio (O/L ratio) than ahFAD2A gene (8.08%, 6.86% and 3.78% PVE). The FAD2 genes had no effect on oil content. This study identified a total of 78 main-effect QTLs (M-QTLs) with up to 42.33% phenotypic variation (PVE) and 10 epistatic QTLs (E-QTLs) up to 3.31% PVE for oil content and quality traits. CONCLUSIONS: A total of 78 main-effect QTLs (M-QTLs) and 10 E-QTLs have been detected for oil content and oil quality traits. One major QTL (more than 10% PVE) was identified in both the populations for oil content with source alleles from NC94022 and GT-C20 parental genotypes. FAD2 genes showed high effect for oleic acid (C18:1), linoleic acid (C18:2), and O/L ratio while no effect on total oil content. The information on phenotypic effect of FAD2 genes for oleic acid, linoleic acid and O/L ratio, and oil content will be applied in breeding selection.


Asunto(s)
Arachis/genética , Ácido Graso Desaturasas/genética , Aceites de Plantas/metabolismo , Arachis/enzimología , Cruzamiento , Mapeo Cromosómico , Epistasis Genética , Calidad de los Alimentos , Genes de Plantas , Estudios de Asociación Genética , Sitios de Carácter Cuantitativo
14.
Phytopathology ; 104(2): 202-10, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24025049

RESUMEN

Tomato spotted wilt virus (TSWV) severely affects peanut production in the southeastern United States. Breeding efforts over the last three decades resulted in the release of numerous peanut genotypes with field resistance to TSWV. The degree of field resistance in these genotypes has steadily increased over time, with recently released genotypes exhibiting a higher degree of field resistance than older genotypes. However, most new genotypes have never been evaluated in the greenhouse or laboratory against TSWV or thrips, and the mechanism of resistance is unknown. In this study, TSWV-resistant and -susceptible genotypes were subjected to TSWV mechanical inoculation. The incidence of TSWV infection was 71.7 to 87.2%. Estimation of TSWV nucleocapsid (N) gene copies did not reveal significant differences between resistant and susceptible genotypes. Parsimony and principal component analyses of N gene nucleotide sequences revealed inconsistent differences between virus isolates collected from resistant and susceptible genotypes and between old (collected in 1998) and new (2010) isolates. Amino acid sequence analyses indicated consistent differences between old and new isolates. In addition, we found evidence for overabundance of nonsynonymous substitutions. However, there was no evidence for positive selection. Purifying selection, population expansion, and differentiation seem to have influenced the TSWV populations temporally rather than positive selection induced by host resistance. Choice and no-choice tests indicated that resistant and susceptible genotypes differentially affected thrips feeding and survival. Thrips feeding and survival were suppressed on some resistant genotypes compared with susceptible genotypes. These findings reveal how TSWV resistance in peanut could influence evolution, epidemiology, and management of TSWV.


Asunto(s)
Arachis/virología , Interacciones Huésped-Patógeno , Insectos Vectores/fisiología , Enfermedades de las Plantas/virología , Thysanoptera/fisiología , Tospovirus/fisiología , Animales , Arachis/genética , Arachis/inmunología , Arachis/parasitología , Conducta Alimentaria , Genética de Población , Genotipo , Georgia , Haplotipos , Insectos Vectores/virología , Mutación , Proteínas de la Nucleocápside/genética , Filogenia , Enfermedades de las Plantas/inmunología , Hojas de la Planta , Plantones , Thysanoptera/virología , Tospovirus/genética
15.
J Econ Entomol ; 106(2): 587-96, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23786043

RESUMEN

Spotted wilt disease caused by Tomato spotted wilt virus (TSWV) (family Bunyaviridae; genus Tospovirus) is a major constraint to peanut (Arachis hypogaea L.) production in the southeastern United States. Reducing yield losses to TSWV has heavily relied on planting genotypes that reduce the incidence of spotted wilt disease. However, mechanisms conferring resistance to TSWV have not been identified in these genotypes. Furthermore, no information is available on how these genotypes influence thrips fitness. In this study, we investigated the effects of newly released peanut genotypes (Georganic, GA-06G, Tifguard, and NC94022) with field resistance to TSWV and a susceptible genotype (Georgia Green) on tobacco thrips, Frankliniella fusca (Hinds), fitness, and TSWV incidence. Thrips-mediated transmission resulted in TSWV infection in both TSWV-resistant and susceptible genotypes and they exhibited typical TSWV symptoms. However, some resistant genotypes had reduced viral loads (fewer TSWV N-gene copies) than the susceptible genotype. F. fusca larvae acquired TSWV from resistant and susceptible genotypes indicating that resistant genotypes also can serve as inoculum sources. Unlike resistant genotypes in other crops that produce local lesions (hypersensitive reaction) upon TSWV infection, widespread symptom development was noticed in peanut genotypes. Results indicated that the observed field resistance in peanut genotypes could be because of tolerance. Further, fitness studies revealed some, but not substantial, differences in thrips adult emergence rates and developmental time between resistant and susceptible genotypes. Thrips head capsule length and width were not different when reared on different genotypes.


Asunto(s)
Arachis/virología , Enfermedades de las Plantas/virología , Thysanoptera/fisiología , Tospovirus/fisiología , Animales , Arachis/genética , Arachis/crecimiento & desarrollo , Ensayo de Inmunoadsorción Enzimática , Aptitud Genética , Genotipo , Georgia , Enfermedades de las Plantas/genética , Thysanoptera/genética , Thysanoptera/virología
16.
J Integr Plant Biol ; 55(5): 453-61, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23384141

RESUMEN

Low genetic diversity makes peanut (Arachis hypogaea L.) very vulnerable to plant pathogens, causing severe yield loss and reduced seed quality. Several hundred partial genomic DNA sequences as nucleotide-binding-site leucine-rich repeat (NBS-LRR) resistance genes (R) have been identified, but a small portion with expressed transcripts has been found. We aimed to identify resistance gene analogs (RGAs) from peanut expressed sequence tags (ESTs) and to develop polymorphic markers. The protein sequences of 54 known R genes were used to identify homologs from peanut ESTs from public databases. A total of 1,053 ESTs corresponding to six different classes of known R genes were recovered, and assembled 156 contigs and 229 singletons as peanut-expressed RGAs. There were 69 that encoded for NBS-LRR proteins, 191 that encoded for protein kinases, 82 that encoded for LRR-PK/transmembrane proteins, 28 that encoded for Toxin reductases, 11 that encoded for LRR-domain containing proteins and four that encoded for TM-domain containing proteins. Twenty-eight simple sequence repeats (SSRs) were identified from 25 peanut expressed RGAs. One SSR polymorphic marker (RGA121) was identified. Two polymerase chain reaction-based markers (Ahsw-1 and Ahsw-2) developed from RGA013 were homologous to the Tomato Spotted Wilt Virus (TSWV) resistance gene. All three markers were mapped on the same linkage group AhIV. These expressed RGAs are the source for RGA-tagged marker development and identification of peanut resistance genes.


Asunto(s)
Arachis/metabolismo , Etiquetas de Secuencia Expresada , Proteínas de Plantas/metabolismo , Arachis/genética , Arachis/virología , Minería de Datos , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Variación Genética/genética , Proteínas de Plantas/genética , Tospovirus/patogenicidad
17.
Front Plant Sci ; 14: 1270531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034554

RESUMEN

Tomato spotted wilt orthotospovirus (TSWV) transmitted by thrips causes significant yield loss in peanut (Arachis hypogaea L.) production. Use of peanut cultivars with moderate field resistance has been critical for TSWV management. However, current TSWV resistance is often not adequate, and the availability of sources of tetraploid resistance to TSWV is very limited. Allotetraploids derived by crossing wild diploid species could help introgress alleles that confer TSWV resistance into cultivated peanut. Thrips-mediated TSWV screening identified two diploids and their allotetraploid possessing the AA, BB, and AABB genomes Arachis stenosperma V10309, Arachis valida GK30011, and [A. stenosperma × A. valida]4x (ValSten1), respectively. These genotypes had reduced TSWV infection and accumulation in comparison with peanut of pure cultivated pedigree. Transcriptomes from TSWV-infected and non-infected samples from A. stenosperma, A. valida, and ValSten1 were assembled, and differentially expressed genes (DEGs) following TSWV infection were assessed. There were 3,196, 8,380, and 1,312 significant DEGs in A. stenosperma, A. valida, and ValSten1, respectively. A higher proportion of genes decreased in expression following TSWV infection for A. stenosperma and ValSten1, whereas a higher proportion of genes increased in expression following infection in A. valida. The number of DEGs previously annotated as defense-related in relation to abiotic and biotic stress was highest in A. valida followed by ValSten1 and A. stenosperma. Plant phytohormone and photosynthesis genes also were differentially expressed in greater numbers in A. valida followed by ValSten1 and A. stenosperma, with over half of those exhibiting decreases in expression.

18.
Pathogens ; 12(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37764910

RESUMEN

Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) causes spotted wilt disease in peanut (Arachis hypogaea L.) and limits yield. Breeding programs have been developing TSWV-resistant cultivars, but availability of sources of resistance against TSWV in cultivated germplasm is extremely limited. Diploid wild Arachis species can serve as important sources of resistance, and despite ploidy barriers (cultivated peanut is tetraploid), their usage in breeding programs is now possible because of the knowledge and development of induced interspecific allotetraploid hybrids. This study screened 10 wild diploid Arachis and six induced allotetraploid genotypes via thrips-mediated TSWV transmission assays and thrips' feeding assays in the greenhouse. Three parameters were evaluated: percent TSWV infection, virus accumulation, and temporal severity of thrips feeding injury. Results indicated that the diploid A. stenosperma accession V10309 and its derivative-induced allotetraploid ValSten1 had the lowest TSWV infection incidences among the evaluated genotypes. Allotetraploid BatDur1 had the lowest thrips-inflicted damage at each week post thrips release, while diploid A. batizocoi accession K9484 and A. duranensis accession V14167 had reduced feeding damage one week post thrips release, and diploids A. valida accession GK30011 and A. batizocoi had reduced feeding damage three weeks post thrips releasethan the others. Overall, plausible TSWV resistance in diploid species and their allotetraploid hybrids was characterized by reduced percent TSWV infection, virus accumulation, and feeding severity. Furthermore, a few diploids and tetraploid hybrids displayed antibiosis against thrips. These results document evidence for resistance against TSWV and thrips in wild diploid Arachis species and peanut-compatible-induced allotetraploids.

19.
Theor Appl Genet ; 124(4): 653-64, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22072100

RESUMEN

Construction and improvement of a genetic map for peanut (Arachis hypogaea L.) continues to be an important task in order to facilitate quantitative trait locus (QTL) analysis and the development of tools for marker-assisted breeding. The objective of this study was to develop a comparative integrated map from two cultivated × cultivated recombinant inbred line (RIL) mapping populations and to apply in mapping Tomato spotted wilt virus (TSWV) resistance trait in peanut. A total of 4,576 simple sequence repeat (SSR) markers from three sources: published SSR markers, newly developed SSR markers from expressed sequence tags (EST) and from bacterial artificial chromosome end-sequences were used for screening polymorphisms. Two cleaved amplified polymorphic sequence markers were also included to differentiate ahFAD2A alleles and ahFAD2B alleles. A total of 324 markers were anchored on this integrated map covering 1,352.1 cM with 21 linkage groups (LGs). Combining information from duplicated loci between LGs and comparing with published diploid maps, seven homoeologous groups were defined and 17 LGs (A1-A10, B1-B4, B7, B8, and B9) were aligned to corresponding A-subgenome or B-subgenome of diploid progenitors. One reciprocal translocation was confirmed in the tetraploid-cultivated peanut genome. Several chromosomal rearrangements were observed by comparing with published cultivated peanut maps. High consistency with cultivated peanut maps derived from different populations may support this integrated map as a reliable reference map for peanut whole genome sequencing assembling. Further two major QTLs for TSWV resistance were identified for each RILs, which illustrated the application of this map.


Asunto(s)
Arachis/genética , Mapeo Cromosómico , Ligamiento Genético/genética , Sitios de Carácter Cuantitativo , Tospovirus/patogenicidad , Arachis/inmunología , Arachis/virología , Cromosomas Artificiales Bacterianos , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Genoma de Planta , Repeticiones de Microsatélite/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Tospovirus/inmunología
20.
Comp Funct Genomics ; 2012: 373768, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22745594

RESUMEN

Many plant ESTs have been sequenced as an alternative to whole genome sequences, including peanut because of the genome size and complexity. The US peanut research community had the historic 2004 Atlanta Genomics Workshop and named the EST project as a main priority. As of August 2011, the peanut research community had deposited 252,832 ESTs in the public NCBI EST database, and this resource has been providing the community valuable tools and core foundations for various genome-scale experiments before the whole genome sequencing project. These EST resources have been used for marker development, gene cloning, microarray gene expression and genetic map construction. Certainly, the peanut EST sequence resources have been shown to have a wide range of applications and accomplished its essential role at the time of need. Then the EST project contributes to the second historic event, the Peanut Genome Project 2010 Inaugural Meeting also held in Atlanta where it was decided to sequence the entire peanut genome. After the completion of peanut whole genome sequencing, ESTs or transcriptome will continue to play an important role to fill in knowledge gaps, to identify particular genes and to explore gene function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA