Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 157(10): 104701, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36109231

RESUMEN

Interactions of N2 at oxide surfaces are important for understanding electrocatalytic nitrogen reduction reaction (NRR) mechanisms. Interactions of N2 at the polycrystalline vanadium oxide/vapor interface were monitored at room temperature and total pressures up to 10-1 Torr using Near-Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS). The oxide film was predominantly V(IV), with V(III) and V(V) components. XPS spectra were acquired in environments of both pure N2 and equal pressures of N2 and H2O vapor. In pure N2, broad, partially resolved N1s features were observed at binding energies of 401.0 and 398.7 eV, with a relative intensity of ∼3:1, respectively. These features remained upon subsequent pumpdown to 10-9 Torr. The observed maximum N surface coverage was ∼1.5 × 1013 cm-2-a fraction of a monolayer. In the presence of equal pressures of H2O, the adsorbed N intensity at 10-1 Torr is ∼25% of that observed in the absence of H2O. The formation of molecularly adsorbed H2O was also observed. Density functional theory-based calculations suggest favorable absorption energies for N2 bonding to both V(IV) and V(III) cation sites but less so for V(V) sites. Hartree-Fock-based cluster calculations for N2-V end-on adsorption show that experimental XPS doublet features are consistent with the calculated shake-up and normal, final ionic configurations for N2 end-on bonding to V(III) sites but not V(IV) sites. The XPS spectra of vanadium oxide transferred in situ between electrochemical and UHV environments indicate that the oxide surfaces studied here are stable upon exposure to the electrolyte under NRR-relevant conditions.

2.
Chem Rev ; 100(2): 807-18, 2000 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-11749252
3.
J Chem Inf Comput Sci ; 41(2): 281-7, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11277712

RESUMEN

Two different soft computing (SC) techniques (a competitive learning neural network and an integrated neural network-fuzzy logic-genetic algorithm approach) are employed in the analysis of a database subset obtained from the Cambridge Structural Database. The chemical problem chosen for study is relevant to the relationship between various metric parameters in transition metal imido (LnMdNZ, Z = carbon-based substituent) complexes and the chemical consequences of such relationships. The SC techniques confirmed and quantified the suspected relationship between the metal-nitrogen bond length and the metal-nitrogen-substituent bond angle for transition metal imidos: increased metal-nitrogen-carbon angles correlate with shortened metal-nitrogen distances. The mining effort also yielded an unexpected correlation between the NC distance and the MNC angle-shorter NC correlate with larger MNC. A fuzzy inference system is used to construct an MNred-NC-MNC hypersurface. This hypersurface suggests a complicated interdependence among NC, MNred, and the angle subtended by these two bonds. Also, major portions of the hypersurface are very flat, in regions where MNC is approaching linearity. The relationships are also seen to be influenced by whether the imido substituent is an alkyl or aryl group. Computationally, the present results are of particular interest in two respects. First, SC classification was able to isolate an "outlier" cluster. Identification of outliers is important as they may correspond to unreported experimental errors in the database or novel chemical entities, both of which warrant further investigation. Second, the SC database mining not only confirmed and quantified a suspected relationship (MNred versus MNC) within the data but also yielded a trend that was not suspected (NC versus MNC).

4.
J Chem Inf Comput Sci ; 41(1): 38-42, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11206380

RESUMEN

An initial effort to study the nonlinear optical (NLO) properties of interacting transition-metal-oxo complexes is presented and studied by effective core potential approaches. Osmium tetroxide is used for this study. Favorable intermolecular interaction effects, even within this weak interaction regime, that yield enhancements in NLO properties have been found. Interaction effects increase alpha (polarizability) up to 6% and gamma (second hyperpolarizability) up to 100% relative to the isolated monomer result for OsO4. The magnitude of the interaction (hyper)polarizabilities, and indeed even the sign, is found to be quite sensitive to the relative orientation of the osmium tetroxide monomers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA