Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34182608

RESUMEN

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Enfermedades Transmisibles/epidemiología , Humanos , Pandemias/prevención & control , SARS-CoV-2
2.
Plant Biotechnol J ; 19(10): 1921-1936, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34181810

RESUMEN

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.


Asunto(s)
Artemisia annua , Enfermedades Transmisibles , Preparaciones Farmacéuticas , Animales , Humanos , Agricultura Molecular , Plantas Comestibles
3.
An Acad Bras Cienc ; 91(suppl 1): e20180124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30365717

RESUMEN

The constant demand for new antibiotic drugs has driven efforts by the scientific community to prospect for peptides with a broad spectrum of action. In this context, antimicrobial peptides (AMPs) have acquired great scientific importance in recent years due to their ability to possess antimicrobial and immunomodulatory activity. In the last two decades, plants have attracted the interest of the scientific community and industry as regards their potential as biofactories of heterologous proteins. One of the most promising approaches is the use of viral vectors to maximize the transient expression of drugs in the leaves of the plant Nicotiana benthamiana. Recently, the MagnifectionTM expression system was launched. This sophisticated commercial platform allows the assembly of the viral particle in leaf cells and the systemic spread of heterologous protein biosynthesis in green tissues caused by Agrobacterium tumefaciens "gene delivery method". The system also presents increased gene expression levels mediated by potent viral expression machinery. These characteristics allow the mass recovery of heterologous proteins in the leaves of N. benthamiana in 8 to 10 days. This system was highly efficient for the synthesis of different classes of pharmacological proteins and contains enormous potential for the rapid and abundant biosynthesis of AMPs.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Péptidos Catiónicos Antimicrobianos/biosíntesis , Agricultura Molecular/métodos , Nicotiana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Biosíntesis de Proteínas , Péptidos Catiónicos Antimicrobianos/farmacología , Biotecnología/métodos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo
4.
Plant Biotechnol J ; 13(7): 884-92, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25572960

RESUMEN

There is an urgent need to provide effective anti-HIV microbicides to resource-poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost. Here, we report the production of biologically active recombinant cyanovirin-N (rCV-N), an antiviral protein, in genetically engineered soya bean seeds. Pure, biologically active rCV-N was isolated with a yield of 350 µg/g of dry seed weight. The observed amino acid sequence of rCV-N matched the expected sequence of native CV-N, as did the mass of rCV-N (11 009 Da). Purified rCV-N from soya is active in anti-HIV assays with an EC50 of 0.82-2.7 nM (compared to 0.45-1.8 nM for E. coli-produced CV-N). Standard industrial processing of soya bean seeds to harvest soya bean oil does not diminish the antiviral activity of recovered rCV-N, allowing the use of industrial soya bean processing to generate both soya bean oil and a recombinant protein for anti-HIV microbicide development.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas Portadoras/biosíntesis , Glycine max/genética , Ingeniería de Proteínas , Semillas/genética , Fármacos Anti-VIH , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Semillas/metabolismo , Glycine max/metabolismo
5.
Anal Bioanal Chem ; 406(12): 2873-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24652150

RESUMEN

Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to <3 %) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts.


Asunto(s)
Ácidos Grasos/química , Glycine max/química , Plantas Modificadas Genéticamente/química , Semillas/química , Ingeniería Metabólica , Plantas Modificadas Genéticamente/genética , Semillas/genética , Aceite de Soja/química , Aceite de Soja/genética , Aceite de Soja/metabolismo , Glycine max/genética
6.
Cancer Manag Res ; 15: 1351-1367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058537

RESUMEN

Fighting cancer remains one of the greatest challenges for science in the 21st century. Advances in immunotherapy against different types of cancer have greatly contributed to the treatment, remission, and cure of patients. In this context, knowledge of epigenetic phenomena, their relationship with tumor cells and how the immune system can be epigenetically modulated represent some of the greatest advances in the development of anticancer therapies. Epigenetics is a rapidly growing field that studies how environmental factors can affect gene expression without altering DNA sequence. Epigenomic changes include DNA methylation, histone modifications, and non-coding RNA regulation, which impact cellular function. Epigenetics has shown promise in developing cancer therapies, such as immunotherapy, which aims to stimulate the immune system to attack cancer cells. For example, PD-1 and PD-L1 are biomarkers that regulate the immune response to cancer cells and recent studies have shown that epigenetic modifications can affect their expression, potentially influencing the efficacy of immunotherapy. New therapies targeting epigenetic modifications, such as histone deacetylases and DNA methyltransferases, are being developed for cancer treatment, and some have shown promise in preclinical studies and clinical trials. With growing understanding of epigenetic regulation, we can expect more personalized and effective cancer immunotherapies in the future. This review highlights key advances in the use of epigenetic and epigenomic tools and modern immuno-oncology strategies to treat several types of tumors.

7.
Transgenic Res ; 20(4): 841-55, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21069460

RESUMEN

The seed-based production of recombinant proteins is an efficient strategy to achieve the accumulation, correct folding, and increased stability of these recombinant proteins. Among potential plant molecular farming systems, soybean [Glycine max (L.) Merrill] is a viable option for the production of recombinant proteins due to its high protein content, known regulatory sequences, efficient gene transfer protocols, and a scalable production system under greenhouse conditions. We report here the expression and stable accumulation of human coagulation factor IX (hFIX) in transgenic soybean seeds. A biolistic process was utilised to co-introduce a plasmid carrying the hFIX gene under the transcriptional control of the α' subunit of a ß-conglycinin seed-specific promoter and an α-Coixin signal peptide in soybean embryonic axes from mature seeds. The 56-kDa hFIX protein was expressed in the transgenic seeds at levels of up to 0.23% (0.8 g kg(-1) seed) of the total soluble seed protein as determined by an enzyme-linked immunosorbent assay (ELISA) and western blot. Ultrastructural immunocytochemistry assays indicated that the recombinant hFIX in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Mass spectrometry characterisation confirmed the presence of the hFIX recombinant protein sequence. Protein extracts from transgenic seeds showed a blood-clotting activity of up to 1.4% of normal plasma. Our results demonstrate the correct processing and stable accumulation of functional hFIX in soybean seeds stored for 6 years under room temperature conditions (22 ± 2°C).


Asunto(s)
Factor IX/metabolismo , Glycine max/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Antígenos de Plantas/genética , Coagulación Sanguínea/efectos de los fármacos , Factor IX/genética , Factor IX/farmacología , Globulinas/genética , Humanos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Proteínas de Almacenamiento de Semillas/genética , Semillas/genética , Semillas/metabolismo , Proteínas de Soja/genética , Glycine max/genética
8.
Transgenic Res ; 20(4): 811-26, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21069461

RESUMEN

We produced human growth hormone (hGH), a protein that stimulates growth and cell reproduction, in genetically engineered soybean [Glycine max (L.) Merrill] seeds. Utilising the alpha prime (α') subunit of ß-conglycinin tissue-specific promoter from soybean and the α-Coixin signal peptide from Coix lacryma-jobi, we obtained transgenic soybean lines that expressed the mature form of hGH in their seeds. Expression levels of bioactive hGH up to 2.9% of the total soluble seed protein content (corresponding to approximately 9 g kg(-1)) were measured in mature dry soybean seeds. The results of ultrastructural immunocytochemistry assays indicated that the recombinant hGH in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Specific bioassays demonstrated that the hGH expressed in the soybean seeds was fully active. The recombinant hGH protein sequence was confirmed by mass spectrometry characterisation. These results demonstrate that the utilisation of tissue-specific regulatory sequences is an attractive and viable option for achieving high-yield production of recombinant proteins in stable transgenic soybean seeds.


Asunto(s)
Glycine max/genética , Hormona de Crecimiento Humana/biosíntesis , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/biosíntesis , Semillas/genética , Secuencia de Aminoácidos , Antígenos de Plantas/genética , Globulinas/genética , Hormona de Crecimiento Humana/genética , Humanos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/genética , Proteínas de Almacenamiento de Semillas/genética , Semillas/metabolismo , Proteínas de Soja/genética , Glycine max/metabolismo , Vacuolas/metabolismo
9.
Drug Discov Today ; 26(11): 2515-2526, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34245910

RESUMEN

Over the past few decades, the number of health and 'omics-related data' generated and stored has grown exponentially. Patient information can be collected in real time and explored using various artificial intelligence (AI) tools in clinical trials; mobile devices can also be used to improve aspects of both the diagnosis and treatment of diseases. In addition, AI can be used in the development of new drugs or for drug repurposing, in faster diagnosis and more efficient treatment for various diseases, as well as to identify data-driven hypotheses for scientists. In this review, we discuss how AI is starting to revolutionize the life sciences sector.


Asunto(s)
Inteligencia Artificial , Disciplinas de las Ciencias Biológicas , Biotecnología , Ensayos Clínicos como Asunto , Ciencia de los Datos , Diseño de Fármacos , Desarrollo de Medicamentos , Registros Electrónicos de Salud , Humanos , Aplicaciones Móviles , Procesamiento de Lenguaje Natural , Farmacología , Edición
10.
Biotechnol Lett ; 30(12): 2063-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18688573

RESUMEN

Human factor IX is synthesized in the liver and secreted in the blood, where it participates in a group of reactions involving coagulation factors and proteins that permit sanguinary coagulation. In this work two lines of transgenic mice were developed to express the FIX gene in the mammalian glands under control of milk beta-casein promoter. The founding females secreted the FIX in their milk (3% total soluble protein). The stable integration of transgene was confirmed by southern blot analysis. The presence of the FIX recombinant protein in the milk of transgenic females was confirmed by western blot and the clotting activity was revealed in blood-clotting assays. The coagulation activity in human blood treated with recombinant FIX increased while the time of coagulation decreased. Our results confirm the production of a large amount of recombinant biologically active FIX in the mammary gland of transgenic mice.


Asunto(s)
Factor IX/biosíntesis , Glándulas Mamarias Animales/metabolismo , Proteínas de la Leche/biosíntesis , Animales , Southern Blotting , Western Blotting , Factor IX/metabolismo , Factor IX/fisiología , Femenino , Lactancia , Masculino , Ratones , Ratones Transgénicos , Proteínas de la Leche/genética , Proteínas de la Leche/metabolismo , Tiempo de Tromboplastina Parcial , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo
11.
Pharmacol Ther ; 183: 160-176, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29024740

RESUMEN

Despite the advances in tumor identification and treatment, cancer remains the primary driver of death around the world. Also, regular treatments for the disease are incapable of targeting particular cancer types at different stages since they are not specifically focused on harmful cells since they influence both solid and tumor cells, causing side effects and undesirable symptoms. Therefore, novel strategies should be developed to treat this disease. Several efforts have been made in this direction to find more effective alternatives to cancer treatment, such as the use of antimicrobial peptides (AMPs) with antitumoral activity, nanocarriers and natural compounds from a variety of sources. AMPs are more specific to their targets because of electrostatic interaction between AMPs and the cancer cells' plasma membrane. Nanocarriers may be used for the delivery of non-soluble drugs, which are poorly stable or require a controlled release. In addition, natural compounds have been a rich source of anti-cancer agents for decades. In this review, these three approaches will be discussed, showing recent advances and advantages of using these strategies to treat cancer as well as the combination of these approaches increasing anticancer activity.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Humanos , Nanotecnología
12.
Drug Discov Today ; 22(2): 234-248, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27890668

RESUMEN

Anti-infective drugs have had a key role in the contemporary world, contributing to dramatically decrease mortality rates caused by infectious diseases worldwide. Antimicrobial peptides (AMPs) are multifunctional effectors of the innate immune system of mucosal surfaces and present antimicrobial activity against a range of pathogenic viruses, bacteria, and fungi. However, the discovery and development of new antibacterial drugs is a crucial step to overcome the great challenge posed by the emergence of antibiotic resistance. In this review, we outline recent advances in the development of novel AMPs with improved antimicrobial activities that were achieved through characteristic structural design. In addition, we describe recent progress made to overcome some of the major limitations that have hindered peptide biosynthesis.


Asunto(s)
Antibacterianos/biosíntesis , Péptidos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sistemas CRISPR-Cas , Diseño de Fármacos , Farmacorresistencia Bacteriana , Resistencia a Múltiples Medicamentos , Quimioterapia , Economía , Edición Génica , Humanos , Biosíntesis de Péptidos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Cambio Social , Nicotiana/metabolismo
13.
Biotechnol J ; 9(1): 39-50, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24376137

RESUMEN

Plants have emerged as an attractive alternative to the traditional mammalian cell cultures or microbial cell-based systems system for the production of valuable recombinant proteins. Through recombinant DNA technology, plants can be engineered to produce large quantities of pharmaceuticals and industrial proteins of high quality at low costs. The recombinant production, by transgenic plants, of therapeutic proteins normally present in human plasma, such as cytokines, coagulation factors, anticoagulants, and immunoglobulins, represents a response to the ongoing challenges in meeting the demand for therapeutic proteins to treat serious inherited or acquired bleeding and immunological diseases. As the clinical utilization of fractionated plasma molecules is limited by high production costs, using recombinant biopharmaceuticals derived from plants represents a feasible alternative to provide efficient treatment. Plant-derived pharmaceuticals also reduce the potential risks to patients of infection with pathogens or unwanted immune responses due to immunogenic antigens. In this review, we summarize the recent advances in molecular farming of cytokines. We also examine the technological basis, upcoming challenges, and perspectives for the biosynthesis and detection of these molecules in different plant production platforms.


Asunto(s)
Citocinas/genética , Agricultura Molecular , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/genética , Productos Biológicos , Proteínas Sanguíneas/genética , Humanos , Ingeniería de Proteínas , Tecnología Farmacéutica/métodos
14.
Curr Pharm Des ; 19(31): 5553-63, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23394558

RESUMEN

Seeds are organs specialised in accumulating proteins, and they may provide a potential economically viable platform for the large-scale production and storage of many molecules for pharmaceutical and other productive sectors. Soybean [Glycine max (L.) Merrill] has a high seed protein content and represents an excellent source of abundant and cheap biomass. Under greenhouse conditions and a daily photoperiod of 23 h of light, the soybean plant's vegetative growth can be significantly extended by inducing more than a tenfold increase in seed production when compared with plants cultivated under field conditions. Some factors involved in the production of different recombinant proteins in soybean seeds are discussed in this review. These include transgenic system, regulatory sequences and the use of Mass Spectrometry as a new tool for molecular characterisation of seed produced recombinant proteins. The important intrinsic characteristics and possibility of genetically engineering soybean seeds, using current advances in recombinant DNA technology including metabolic engineering and synthetic biology, should form the foundation for large-scale and more precise genome modification, making this crop an important candidate as bioreactor for production of recombinant molecules.


Asunto(s)
Glycine max/genética , Proteínas Recombinantes/genética , Proteínas de Soja/genética , Animales , Ingeniería Genética/métodos , Genoma de Planta , Humanos , Espectrometría de Masas , Agricultura Molecular/métodos , Semillas , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA