Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Inorg Chem ; 58(9): 5468-5475, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31007022

RESUMEN

The thermal behavior of Tc2O7 has been investigated by single-crystal X-ray diffraction of the solid state over a range of 80-280 K and by ab initio molecular dynamics (MD) simulations. The thermal expansion coefficient of the solid was experimentally determined to be 189 × 10-6 Å3 K-1 at 280 K. The simulations accurately reproduce the experimentally determined crystal structures and thermal expansion within a few percent. The experimental melting point and vapor pressure for Tc2O7 are unusually high and low, respectively, in comparison to similar molecular solids. Through investigating the structure and the motion of the solid across a range of temperatures, we provide insights into the thermal behavior of Tc2O7.

2.
Angew Chem Int Ed Engl ; 58(46): 16508-16511, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31536176

RESUMEN

The synthesis, structure, and spectroscopic characterization of the first transplutonium metal-organic framework (MOF) is described. The preparation and structure of Am-GWMOF-6, [Am2 (C6 H8 O4 )3 (H2 O)2 ][(C10 H8 N2 )], is analogous to that of the isostructural trivalent lanthanide-only containing material GWMOF-6. The presented MOF architecture is used as a platform to probe Am3+ coordination chemistry and guest-enhanced luminescent emission, whereas the framework itself provides a means to monitor the effects of self-irradiation upon crystallinity over time. Presented here is a discussion of these properties and the opportunities that MOFs provide in the structural and spectroscopic study of actinides.

3.
Inorg Chem ; 56(15): 9219-9224, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28737380

RESUMEN

The structure of TcO2 between 25 and 1000 °C has been determined in situ using X-ray powder diffraction methods and is found to remain monoclinic in space group P21/c. Thermal expansion in TcO2 is highly anisotropic, with negative thermal expansion of the b axis observed above 700 °C. This is the result of an anomalous expansion along the a axis that is a consequence of weakening of the Tc-Tc bonds.

4.
Inorg Chem ; 56(5): 2448-2458, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28221038

RESUMEN

The molecular and electronic structures of the group 7 heptoxides were investigated by computational methods as both isolated molecules and in the solid-state. The metal-oxygen-metal bending angle of the single molecule increased with increasing atomic number, with Re2O7 preferring a linear structure. Natural bond orbital and localized orbital bonding analyses indicate that there is a three-center covalent bond between the metal atoms and the bridging oxygen, and the increasing ionic character of the bonds favors larger bond angles. The calculations accurately reproduce the experimental crystal structures within a few percent. Analysis of the band structures and density of states shows similar bonding for all of the solid-state heptoxides, including the presence of the three-center covalent bond. DFT+U simulations show that PBE-D3 underpredicts the band gap by ∼0.2 eV due to an undercorrelation of the metal d conducting states. Homologue and compression studies show that Re2O7 adopts a polymeric structure because the Re-oxide tetrahedra are easily distorted by packing stresses to form additional three-center covalent bonds.

5.
Inorg Chem ; 55(14): 7111-6, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27387436

RESUMEN

The dinuclear rhenium(II) complex Re2Br4(PMe3)4 was prepared from the reduction of [Re2Br8](2-) with (n-Bu4N)BH4 in the presence of PMe3 in propanol. The complex was characterized by single-crystal X-ray diffraction (SCXRD) and UV-visible spectroscopy. It crystallizes in the monoclinic C2/c space group and is isostructural with its molybdenum and technetium analogues. The Re-Re distance (2.2521(3) Å) is slightly longer than the one in Re2Cl4(PMe3)4 (2.247(1) Å). The molecular and electronic structure of Re2X4(PMe3)4 (X = Cl, Br) were studied by multiconfigurational quantum chemical methods. The computed ground-state geometry is in excellent agreement with the experimental structure determined by SCXRD. The calculated total bond order (2.75) is consistent with the presence of an electron-rich triple bond and is similar to the one found for Re2Cl4(PMe3)4. The electronic absorption spectrum of Re2Br4(PMe3)4 was recorded in benzene and shows a series of low-intensity bands in the range 10 000-26 000 cm(-1). The absorption bands were assigned based on calculations of the excitation energies with the multireference wave functions followed by second-order perturbation theory using the CASSCF/CASPT2 method. Calculations predict that the lowest energy band corresponds to the δ* → σ* transition, while the next higher energy bands were attributed to the δ* → π*, δ → σ*, and δ → π* transitions.

6.
Inorg Chem ; 55(20): 10445-10452, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27700061

RESUMEN

Ditechnetium heptoxide was synthesized from the oxidation of TcO2 with O2 at 450 °C and characterized by single-crystal X-ray diffraction, electron-impact mass spectrometry (EI-MS), and theoretical methods. Refinement of the structure at 100 K indicates that Tc2O7 crystallizes as a molecular solid in the orthorhombic space group Pbca [a = 7.312(3) Å, b = 5.562(2) Å, c = 13.707(5) Å, and V = 557.5(3) Å3]. The Tc2O7 molecule can be described as corner-sharing TcO4 tetrahedron [Tc---Tc = 3.698(1) Å and Tc-OBri-Tc = 180.0°]. The EI-MS spectrum of Tc2O7 consists of both mononuclear and dinuclear species. The main dinuclear species in the gas-phase are Tc2O7 (100%) and Tc2O5 (56%), while the main mononuclear species are TcO3 (33.9%) and TcO2 (42.8%). The difference in the relative intensities of the M2O5 (M = Tc, Re) fragments (1.7% for Re) indicates that these group 7 elements exhibit different gas-phase chemistry. The solid-state structure of Tc2O7 was investigated by density functional theory methods. The optimized structure of the Tc2O7 molecule is in good agreement with the experimental one. Simulations indicate that the more favorable geometry for the Tc2O7 molecule in the gas-phase is bent (Tc-OBri-Tc = 156.5°), while a linear geometry (Tc-OBri-Tc = 180.0°) is favored in the solid-state.

7.
Acc Chem Res ; 47(2): 624-32, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24393028

RESUMEN

Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/ß-TcCl3, α/ß-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (ß-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, ß-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc(IV)) to d(5) (Tc(II)) is accompanied by the formation of metal-metal bonds in the coordination polyhedra. There is no metal-metal interaction in TcX4, a Tc═Tc double bond is present in α/ß-TcCl3, and a Tc≡Tc triple bond is present in α/ß-TcCl2. We investigated the thermal behavior of these binary halides in sealed tubes under vacuum at elevated temperature. Technetium tetrachloride decomposes stepwise to α-TcCl3 and ß-TcCl2 at 450 °C, while ß-TcCl3 converts to α-TcCl3 at 280 °C. The technetium dichlorides disproportionate to Tc metal and TcCl4 above ∼600 °C. At 450 °C in a sealed Pyrex tube, TcBr3 decomposes to Na{[Tc6Br12]2Br}, while TcI3 decomposes to Tc metal. We have used technetium tribromide in the preparation of new divalent complexes; we expect that the other halides will also serve as starting materials for the synthesis of new compounds (e.g., complexes with a Tc3(9+) core, divalent iodide complexes, binary carbides, nitrides, and phosphides, etc.). Technetium halides may also find applications in the nuclear fuel cycle; their thermal properties could be utilized in separation processes using halide volatility. In summary, we hope that these new insights on technetium binary halides will contribute to a better understanding of the chemistry of this fascinating element.

8.
Inorg Chem ; 53(3): 1260-2, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24437639

RESUMEN

Magnetic circular dichroism (MCD) and electronic absorption spectroscopies have been used to probe the electronic structure of the classical paramagnetic metal-metal-bonded complexes [Re2X4(PMe3)4](+) (X = Cl, Br). A violation of the MCD sum rule is observed that indicates the presence of ground-state contributions to the MCD intensity. The z-polarized δ → δ* band in the near-IR is formally forbidden in MCD but gains intensity through a combination of ground- and excited-state mechanisms to yield a positive C term.

9.
J Am Chem Soc ; 135(42): 15955-62, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24053573

RESUMEN

A second polymorph of technetium dichloride, ß-TcCl2, has been synthesized from the reaction of Tc metal and chlorine in a sealed tube at 450 °C. The crystallographic structure and physical properties of ß-TcCl2 have been investigated. The structure of ß-TcCl2 consists of infinite chains of face sharing [Tc2Cl8] units; within a chain, the Tc≡Tc vectors of two adjacent [Tc2Cl8] units are ordered in the long-range where perpendicular and/or parallel arrangement of Tc≡Tc vectors yields a modulated structure. Resistivity and Seebeck measurements performed on a ß-TcCl2 single crystal indicate the compound to be a p-type semiconductor while a magnetic susceptibility measurement shows technetium dichloride to be diamagnetic. A band gap of 0.12(2) eV was determined by reflectance spectroscopy measurements. Theoretical calculations at the density functional level were utilized for the investigation of other possible stable forms of TcCl2.


Asunto(s)
Electrones , Compuestos de Tecnecio/química , Cristalografía por Rayos X , Fenómenos Magnéticos , Modelos Moleculares , Estructura Molecular , Tamaño de la Partícula , Teoría Cuántica , Propiedades de Superficie , Temperatura
10.
Chemistry ; 19(37): 12272-80, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-23907896

RESUMEN

The superbulky deca-aryleuropocene [Eu(Cp(BIG))2], Cp(BIG) = (4-nBu-C6H4)5-cyclopentadienyl, was prepared by reaction of [Eu(dmat)2(thf)2], DMAT = 2-Me2N-α-Me3Si-benzyl, with two equivalents of Cp(BIG)H. Recrystallizyation from cold hexane gave the product with a surprisingly bright and efficient orange emission (45% quantum yield). The crystal structure is isomorphic to those of [M(Cp(BIG))2] (M = Sm, Yb, Ca, Ba) and shows the typical distortions that arise from Cp(BIG)⋅⋅⋅Cp(BIG) attraction as well as excessively large displacement parameter for the heavy Eu atom (U(eq) = 0.075). In order to gain information on the true oxidation state of the central metal in superbulky metallocenes [M(Cp(BIG))2] (M = Sm, Eu, Yb), several physical analyses have been applied. Temperature-dependent magnetic susceptibility data of [Yb(Cp(BIG))2] show diamagnetism, indicating stable divalent ytterbium. Temperature-dependent (151)Eu Mössbauer effect spectroscopic examination of [Eu(Cp(BIG))2] was examined over the temperature range 93-215 K and the hyperfine and dynamical properties of the Eu(II) species are discussed in detail. The mean square amplitude of vibration of the Eu atom as a function of temperature was determined and compared to the value extracted from the single-crystal X-ray data at 203 K. The large difference in these two values was ascribed to the presence of static disorder and/or the presence of low-frequency torsional and librational modes in [Eu(Cp(BIG))2]. X-ray absorbance near edge spectroscopy (XANES) showed that all three [Ln(Cp(BIG))2] (Ln = Sm, Eu, Yb) compounds are divalent. The XANES white-line spectra are at 8.3, 7.3, and 7.8 eV, for Sm, Eu, and Yb, respectively, lower than the Ln2O3 standards. No XANES temperature dependence was found from room temperature to 100 K. XANES also showed that the [Ln(Cp(BIG))2] complexes had less trivalent impurity than a [EuI2(thf)x] standard. The complex [Eu(Cp(BIG))2] shows already at room temperature strong orange photoluminescence (quantum yield: 45 %): excitation at 412 nm (24,270 cm(-1)) gives a symmetrical single band in the emission spectrum at 606 nm (νmax =16495 cm(-1), FWHM: 2090 cm(-1), Stokes-shift: 2140 cm(-1)), which is assigned to a 4f(6)5d(1) → 4f(7) transition of Eu(II). These remarkable values compare well to those for Eu(II)-doped ionic host lattices and are likely caused by the rigidity of the [Eu(Cp(BIG))2] complex. Sharp emission signals, typical for Eu(III), are not visible.

11.
Inorg Chem ; 52(2): 761-76, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23270453

RESUMEN

Complexations of lanthanide ions with 5,6-dialkyl-2,6-bis(1,2,4-triazin-3-yl)pyridine [RBTP; R = H (HBTP), methyl (MeBTP), ethyl (EtBTP)] derivatives have been studied in the acetonitrile medium by electrospray ionization mass spectrometry, time-resolved laser-induced fluorescence spectroscopy, and UV-vis spectrophotometric titration. These studies were carried out in the absence and presence of a nitrate ion in order to understand the effect of the nitrate ion on their complexation behavior, particularly in the poor solvating acetonitrile medium where strong nitrate complexation of hard lanthanide ions is expected. Consistent results from all three techniques undoubtedly show the formation of lower stoichiometric complexes in the presence of excess nitrate ion. This kind of nitrate ion effect on the speciation of Ln(3+) complexes of RBTP ligands has not so far been reported in the literature. Different Am(3+) and Ln(3+) complexes were observed with RBTP ligands in the presence of 0.01 M tetramethylammonium nitrate, and their stability constant values are determined using UV-vis spectrophotometric titrations. The formation of higher stoichiometric complexes and higher stability constants for Am(3+) compared to Ln(3+) ions indicates the selectivity of these classes of ligands. A single-crystal X-ray diffraction (XRD) study of europium(III) complexes shows the formation of a dimeric complex with HBTP and a monomeric complex with EtBTP, whereas MeBTP forms both the dimeric and monomeric complexes. Density functional theory calculations confirm the findings from single-crystal XRD and also predict the structures of Eu(3+) and Am(3+) complexes observed experimentally.

12.
Inorg Chem ; 52(7): 3573-8, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23153109

RESUMEN

Technetium is intimately linked with nuclear reactions. The ultraminute natural levels in the environment are due to the spontaneous fission of uranium isotopes. The discovery of technetium was born from accelerator reactions, and its use and presence in the modern world are directly due to nuclear reactors. While occupying a central location in the periodic table, the chemistry of technetium is poorly explored, especially when compared to its neighboring elements, i.e., molybdenum, ruthenium, and rhenium. This state of affairs, which is tied to the small number of laboratories equipped to work with the long-lived (99)Tc isotope, provides a remarkable opportunity to combine basic studies with applications for the nuclear fuel cycle. An example is given through examination of the technetium halide compounds. Binary metal halides represent some of the most fundamental of inorganic compounds. The synthesis of new technetium halides demonstrates trends with structure, coordination number, and speciation that can be utilized in the nuclear fuel cycle. Examples are provided for technetium-zirconium alloys as waste forms and the formation of reduced technetium species in separations.

13.
Inorg Chem ; 52(10): 5660-2, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23659536

RESUMEN

The compound Na{[Tc6Br12]2Br} has been obtained from the decomposition of TcBr4 under vacuum in a Pyrex ampule at 450 °C. The stoichiometry of the compound has been confirmed by energy-dispersive X-ray spectroscopy and its structure determined by single-crystal X-ray diffraction. The compound contains a trigonal-prismatic hexanuclear [Tc6Br12] cluster. The cluster is composed of two triangular Tc3Br6 units linked by multiple Tc-Tc bonds. In the Tc3Br6 unit, the average Tc-Tc distance [2.6845(5) Å] is characteristic of Tc-Tc single bonds, while the average Tc-Tc distance between the two triangular units [2.1735(5) Å] is characteristic of Tc≡Tc triple bonds. The electronic structure of the [Tc6Br12] cluster was studied by first-principles calculations, which confirm the presence of single and triple Tc-Tc bonds in the cluster.

14.
Inorg Chem ; 52(24): 14309-16, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24295331

RESUMEN

Technetium tribromide and triiodide were obtained from the reaction of the quadruply Tc-Tc-bonded dimer Tc2(O2CCH3)4Cl2 with flowing HX(g) (X = Br, I) at elevated temperatures. At 150 and 300 °C, the reaction with HBr(g) yields TcBr3 crystallizing with the TiI3 structure type. The analogous reactions with flowing HI(g) yield TcI3, the first technetium binary iodide to be reported. Powder X-ray diffraction (PXRD) measurements show the compound to be amorphous at 150 °C and semicrystalline at 300 °C. X-ray absorption fine structure spectroscopy indicates TcI3 to consist of face-sharing TcI6 octahedra. Reactions of technetium metal with elemental iodine in a sealed Pyrex ampules in the temperature range 250-400 °C were performed. At 250 °C, no reaction occurred, while the reaction at 400 °C yielded a product whose PXRD pattern matches the one of TcI3 obtained from the reaction of Tc2(O2CCH3)4Cl2 and flowing HI(g). The thermal stability of TcBr3 and TcI3 was investigated in Pyrex and/or quartz ampules at 450 °C under vacuum. Technetium tribromide decomposes to Na{[Tc6Br12]2Br} in a Pyrex ampule and to technetium metal in a quartz ampule; technetium triiodide decomposes to technetium metal in a Pyrex ampule.

15.
J Am Chem Soc ; 134(6): 3111-9, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22280303

RESUMEN

A low-temperature fluoride route was utilized to synthesize neptunium mononitride, NpN. Through the development of this process, two new neptunium nitride species, NpN(2) and Np(2)N(3), were identified. The NpN(2) and Np(2)N(3) have crystal structures isomorphous to those of UN(2) and U(2)N(3), respectively. NpN(2) crystallizes in a face-centered cubic CaF(2)-type structure with a space group of Fm3m and a refined lattice parameter of 5.3236(1) Å. The Np(2)N(3) adopts the body-centered cubic Mn(2)O(3)-type structure with a space group of Ia3. Its refined lattice parameter is 10.6513(4) Å. The NpN synthesis at temperatures ≤900 °C using the fluoride route discussed here was also demonstrated. Previous computational studies of the neptunium nitride system have focused exclusively on the NpN phase because no evidence was reported experimentally on the presence of NpN(x) systems. Here, the crystal structures of NpN(2) and Np(2)N(3) are discussed for the first time, confirming the experimental results by density functional calculations (DFT). These DFT calculations were performed within the local-density approximation (LDA+U) and the generalized-gradient approximation (GGA+U) corrected with an effective Hubbard parameter to account for the strong on-site Coulomb repulsion between Np 5f electrons. The effects of the spin-orbit coupling in the GGA+U calculations have also been investigated for NpN(2) and NpN.

16.
Inorg Chem ; 51(17): 9563-70, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22906536

RESUMEN

The cesium salts of [Tc(2)X(8)](3-) (X = Cl, Br), the reduction product of (n-Bu(4)N)[TcOCl(4)] with (n-Bu(4)N)BH(4) in THF, and the product obtained from reaction of Tc(2)(O(2)CCH(3))(4)Cl(2) with HCl(g) at 300 °C have been characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. For the [Tc(2)X(8)](3-) anions, the Tc-Tc separations found by EXAFS spectroscopy (2.12(2) Å for both X = Cl and Br) are in excellent agreement with those found by single-crystal X-ray diffraction (SCXRD) measurements (2.117[4] Å for X = Cl and 2.1265(1) Å for X = Br). The Tc-Tc separation found by EXAFS in these anions is slightly shorter than those found in the [Tc(2)X(8)](2-) anions (2.16(2) Å for X = Cl and Br). Spectroscopic and SCXRD characterization of the reduction product of (n-Bu(4)N)[TcOCl(4)] with (n-Bu(4)N)BH(4) are consistent with the presence of dinuclear species that are related to the [Tc(2)Cl(8)](n-) (n = 2, 3) anions. From these results, a new preparation of (n-Bu(4)N)(2)[Tc(2)Cl(8)] was developed. Finally, EXAFS characterization of the product obtained from reaction of Tc(2)(O(2)CCH(3))(4)Cl(2) with HCl(g) at 300 °C indicates the presence of amorphous α-TcCl(3). The Tc-Tc separation (i.e., 2.46(2) Å) measured in this compound is consistent with the presence of Tc═Tc double bonds in the [Tc(3)](9+) core.


Asunto(s)
Cloruros/química , Cloruros/síntesis química , Tecnecio/química , Cesio/química , Técnicas de Química Sintética , Furanos/química , Ácido Clorhídrico/química , Modelos Moleculares , Conformación Molecular , Temperatura , Espectroscopía de Absorción de Rayos X
17.
Inorg Chem ; 51(9): 4915-7, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22486315

RESUMEN

A second polymorph of technetium trichloride, ß-TcCl(3), has been identified from the reaction between Tc metal and Cl(2) gas. The structure of ß-TcCl(3) consists of infinite layers of edge-sharing octahedra, similar to its MoCl(3) and RuCl(3) analogues. The Tc-Tc distance [2.861(3) Å] between adjacent octahedra is indicative of metal-metal bonding. Earlier theoretical work predicted that ß-TcCl(3) is less stable than α-TcCl(3). In agreement with the prediction, ß-TcCl(3) slowly transforms into α-TcCl(3) (Tc(3)Cl(9)) over 16 days at 280 °C.

18.
Inorg Chem ; 51(9): 4965-71, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22497564

RESUMEN

The structure of ß-molybdenum dichloride is compared with that of TcCl(2) using EXAFS spectroscopy. For TcCl(2), the Tc atom is surrounded by Tc atoms at 2.13(2), 3.45(3), 3.79(4), and 4.02(4) Å. For ß-MoCl(2), the Mo is surrounded by Mo atoms at 2.21(2), 2.91(3), and 3.83(4) Å. The latter distances are consistent with the presence of an [Mo(4)Cl(12)] unit in the solid state, one constituted by two triply Mo-Mo-bonded [Mo(2)Cl(8)] units. First-principles calculations show that ß-MoCl(2) with the TcCl(2) "structure type" is less stable than α-MoCl(2) (Mo(6)Cl(12)) or [Mo(4)Cl(12)] edge-sharing clusters.

19.
Inorg Chem ; 51(15): 8462-7, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22775538

RESUMEN

Technetium tetrachloride has been prepared from the reaction of technetium metal with excess chlorine in sealed Pyrex ampules at elevated temperatures. The product was characterized by single-crystal and powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and alternating-current magnetic susceptibility. Solid TcCl(4) behaves as a simple paramagnet from room temperature down to 50 K with µ(eff) = 3.76 µ(B). Below 25 K, TcCl(4) exhibits an antiferromagnetic transition with a Néel temperature (T(N)) of ∼24 K. The thermal behavior of TcCl(4) was investigated under vacuum at 450 °C; the compound decomposes stepwise to α-TcCl(3) and TcCl(2).

20.
J Am Chem Soc ; 133(23): 8814-7, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21574580

RESUMEN

Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc(2)Cl(8)] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) Å, a distance consistent with the presence of a Tc≡Tc triple bond that is also supported by electronic structure calculations.


Asunto(s)
Cloruros/química , Halógenos/química , Compuestos de Tecnecio/química , Modelos Moleculares , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA