Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38470774

RESUMEN

Multiphase nanomaterials are of increasing importance in material science. Providing reliable and statistically meaningful information on their average nanostructure is essential for synthesis control and applications. In this paper, we propose a novel procedure that simplifies and makes more effective the electron powder diffraction-based Rietveld analysis of nanomaterials. Our single step in-TEM method allows to obtain the instrumental broadening function of the TEM directly from a single measurement without the need for an additional X-ray diffraction measurement. Using a multilayer graphene calibration standard and applying properly controlled acquisition conditions on a spherical aberration-corrected microscope, we achieved the instrumental broadening of ±0.01 Å in terms of interplanar spacing. The shape of the diffraction peaks is modeled as a function of the scattering angle using the Caglioti relation, and the obtained parameters for instrumental broadening can be directly applied in the Rietveld analysis of electron diffraction data of the analyzed specimen. During peak shape analysis, the instrumental broadening parameters of the TEM are controlled separately from nanostructure-related peak broadening effects, which contribute to the higher reliability of nanostructure information extracted from electron diffraction patterns. The potential of the proposed procedure is demonstrated through the Rietveld analysis of hematite nanopowder and two-component Cu-Ni nanocrystalline thin film specimens.

2.
Microsc Res Tech ; 86(2): 144-156, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36069159

RESUMEN

The achievement of this work is that fine tuning of experimental and evaluation parameters can improve the absolute accuracy and reproducibility of selected area electron diffraction (SAED) to 0.1% without using internal standard. Due to the proposed procedure it was possible to reach a reproducibility better than 0.03% for camera length between sessions by careful control of specimen height and illumination conditions by monitoring lens currents. We applied a calibration specimen composed of nanocrystalline grains free of texture and providing narrow diffraction rings. Refinements of the centre of the diffraction pattern and corrections for elliptic ring distortions allowed for determining the ring diameters with an accuracy of 0.1%. We analyze the effect of different error sources and reason the achieved absolute accuracy of the measurement. Application of the proposed evaluation procedure is inevitable in case of multicomponent nanocomposites or textured materials and/or having close diffraction rings where application of automated procedures is limited. The achieved accuracy of 0.1% without internal standard is approaching that of routine laboratory XRD, and reduction of instrumental broadening due to the elaborated evaluation procedure allows for separation of close reflections, provides more reliable ring width and thus improved input parameters for further nanostructure analysis as demonstrated on dental enamel bioapatite.


Asunto(s)
Electrones , Nanocompuestos , Reproducibilidad de los Resultados , Nanocompuestos/química
3.
Nanomaterials (Basel) ; 13(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37446469

RESUMEN

Silicon carbide nanoparticles (SiC NPs) are promising inorganic molecular-sized fluorescent biomarkers. It is imperative to develop methods to functionalize SiC NPs for certain biological applications. One possible route is to form amino groups on the surface, which can be readily used to attach target biomolecules. Here, we report direct amino-termination of aqueous SiC NPs. We demonstrate the applicability of the amino-terminated SiC NPs by attaching bovine serum albumin as a model for functionalization. We monitor the optical properties of the SiC NPs in this process and find that the fluorescence intensity is very sensitive to surface termination. Our finding may have implications for a few nanometers sized SiC NPs containing paramagnetic color centers with optically read electron spins.

4.
Pharmaceutics ; 15(6)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37376206

RESUMEN

In this study, we investigated the cytotoxicity of doxorubicin (DOX)-loaded magnetic nanofluids on 4T1 mouse tumor epithelial cells and MDA-MB-468 human triple-negative breast cancer (TNBC) cells. Superparamagnetic iron oxide nanoparticles were synthesized using sonochemical coprecipitation by applying electrohydraulic discharge treatment (EHD) in an automated chemical reactor, modified with citric acid and loaded with DOX. The resulting magnetic nanofluids exhibited strong magnetic properties and maintained sedimentation stability in physiological pH conditions. The obtained samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy, UV-spectrophotometry, dynamic light scattering (DLS), electrophoretic light scattering (ELS), vibrating sample magnetometry (VSM), and transmission electron microscopy (TEM). In vitro studies using the MTT method revealed a synergistic effect of the DOX-loaded citric-acid-modified magnetic nanoparticles on the inhibition of cancer cell growth and proliferation compared to treatment with pure DOX. The combination of the drug and magnetic nanosystem showed promising potential for targeted drug delivery, with the possibility of optimizing the dosage to reduce side-effects and enhance the cytotoxic effect on cancer cells. The nanoparticles' cytotoxic effects were attributed to the generation of reactive oxygen species and the enhancement of DOX-induced apoptosis. The findings suggest a novel approach for enhancing the therapeutic efficacy of anticancer drugs and reducing their associated side-effects. Overall, the results demonstrate the potential of DOX-loaded citric-acid-modified magnetic nanoparticles as a promising strategy in tumor therapy, and provide insights into their synergistic effects.

5.
Microsc Microanal ; 17(6): 886-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22000156

RESUMEN

A simple plan-view sample preparation technique for transmission electron microscopy (TEM) specimens is proposed for thin films by tearing-off the film with adhesive tape. The demand for very thin samples is highest for nanostructured materials where the structure of 2-5 nm sized features (grains) needs to be resolved; therefore, overlapping of nanometer-sized features should be avoided. The method provides thin areas at the fracture edges of plan-view specimens with thickness in the range of the grain size in the film allowing for artifact free high-resolution TEM imaging. Nanostructured materials typically fracture between the grains providing areas with the thickness of the grain size. Besides the swiftness of the method, the samples are free of surface amorphization artifacts, which can occur in ion beam milling up to 1 nm depth even at low energy ion bombardment. The thin film tear-off technique is demonstrated on a CuMn alloy thin film with grain size of 2 nm.


Asunto(s)
Aleaciones/análisis , Micromanipulación/métodos , Microscopía Electrónica de Transmisión/métodos , Nanoestructuras/análisis , Adhesivos/química , Cobre/análisis , Iones , Manganeso/análisis , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Propiedades de Superficie
6.
Nanomaterials (Basel) ; 11(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467605

RESUMEN

Due to its remarkable switching effect in electrical and optical properties, VO2 is a promising material for several applications. However, the stoichiometry control of multivalent vanadium oxides, especially with a rational deposition technique, is still challenging. Here, we propose and optimize a simple fabrication method for VO2 rich layers by the oxidation of metallic vanadium in atmospheric air. It was shown that a sufficiently broad annealing time window of 3.0-3.5 h can be obtained at an optimal oxidation temperature of 400 °C. The presence of VO2 was detected by selected area diffraction in a transmission electron microscope. According to the temperature dependent electrical measurements, the resistance contrast (R30 °C/R100 °C) varied between 44 and 68, whereas the optical switching was confirmed using in situ spectroscopic ellipsometric measurement by monitoring the complex refractive indices. The obtained phase transition temperature, both for the electrical resistance and for the ellipsometric angles, was found to be 49 ± 7 °C, i.e., significantly lower than that of the bulk VO2 of 68 ± 6 °C.

7.
Chem Mater ; 33(7): 2457-2465, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33859456

RESUMEN

X-ray-activated near-infrared luminescent nanoparticles are considered as new alternative optical probes due to being free of autofluorescence, while both their excitation and emission possess a high penetration efficacy in vivo. Herein, we report silicon carbide quantum dot sensitization of trivalent chromium-doped zinc gallate nanoparticles with enhanced near-infrared emission upon X-ray and UV-vis light excitation. We have found that a ZnGa2O4 shell is formed around the SiC nanoparticles during seeded hydrothermal growth, and SiC increases the emission efficiency up to 1 order of magnitude due to band alignment that channels the excited electrons to the chromium ion.

8.
Nanomaterials (Basel) ; 10(11)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33203017

RESUMEN

Experiments were conducted for the study of the effect of cysteine addition on the microstructure of nanocrystalline Ni films electrodeposited from a nickel sulfate-based bath. Furthermore, the thermal stability of the nanostructure of Ni layers processed with cysteine addition was also investigated. It was found that with increasing cysteine content in the bath, the grain size decreased, while the dislocation density and the twin fault probability increased. Simultaneously, the hardness increased due to cysteine addition through various effects. Saturation in the microstructure and hardness was achieved at cysteine contents of 0.3-0.4 g/L. Moreover, the texture changed from (220) to (200) with increasing the concentration of cysteine. The hardness of the Ni films processed with the addition of 0.4 g/L cysteine (∼6800 MPa) was higher than the values obtained for other additives in the literature (<6000 MPa). This hardness was further enhanced to ∼8400 MPa when the Ni film was heated up to 500 K. It was revealed that the hardness remained as high as 6000 MPa even after heating up to 750 K, while for other additives, the hardness decreased below 3000 MPa at the same temperature.

9.
J Phys Chem Lett ; 11(5): 1675-1681, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32040330

RESUMEN

There is an urgent quest for room-temperature qubits in nanometer-sized, ultrasmall nanocrystals for quantum biosensing, hyperpolarization of biomolecules, and quantum information processing. Thus far, the preparation of such qubits at the nanoscale has remained futile. Here, we present a synthesis method that avoids any interaction of the solid with high-energy particles and uses self-propagated high-temperature synthesis with a subsequent electrochemical method, the no-photon exciton generation chemistry to produce room-temperature qubits in ultrasmall nanocrystals of sizes down to 3 nm with high yield. We first create the host silicon carbide (SiC) crystallites by high-temperature synthesis and then apply wet chemical etching, which results in ultrasmall SiC nanocrystals and facilitates the creation of thermally stable defect qubits in the material. We demonstrate room-temperature optically detected magnetic resonance signal of divacancy qubits with 3.5% contrast from these nanoparticles with emission wavelengths falling in the second biological window (1000-1380 nm). These results constitute the formation of nonperturbative bioagents for quantum sensing and efficient hyperpolarization.

10.
Mater Sci Eng C Mater Biol Appl ; 104: 109966, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31499942

RESUMEN

In this study we present the first crystal structure model for bone apatite based on the analysis of individual nanocrystals by high resolution transmission electron microscopy (HRTEM). Crystallographic image processing of the obtained HRTEM images from different projections indicates symmetry reduction with respect to P63/m stoichiometric apatites and the presence of threefold symmetry along the c axis. Based on HRTEM observations and the measured Ca/P = 2 ratio we propose a structural model with phosphate-to-carbonate substitution and O vacancies localized along c axis, which explains the observed loss of 63 screw axis parallel, and the shift of mirror plane perpendicular to the c axis. Also, the presence of non-equivalent (010) surfaces has been proven. These results on the atomic structure of bone apatite nanocrystals contribute to the understanding of their biochemically controlled nucleation processes.


Asunto(s)
Apatitas/química , Huesos/química , Nanopartículas/química , Carbonatos/química , Cristalografía/métodos , Microscopía Electrónica de Transmisión/métodos
11.
Sci Rep ; 7(1): 10599, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878317

RESUMEN

Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials.

12.
Nanoscale ; 7(25): 10982-8, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26055555

RESUMEN

Molecular-sized colloid silicon carbide (SiC) nanoparticles are very promising candidates to realize bioinert non-perturbative fluorescent nanoparticles for in vivo bioimaging. Furthermore, SiC nanoparticles with engineered vacancy-related emission centres may realize magneto-optical probes operating at nanoscale resolution. Understanding the nature of molecular-sized SiC nanoparticle emission is essential for further applications. Here we report an efficient and simple method to produce a relatively narrow size distribution of water soluble molecular-sized SiC nanoparticles. The tight control of their size distribution makes it possible to demonstrate a switching mechanism in the luminescence correlated with particle size. We show that molecular-sized SiC nanoparticles of 1-3 nm show a relatively strong and broad surface related luminescence whilst the larger ones exhibit a relatively weak band edge and structural defect luminescence with no evidence of quantum confinement effect.

13.
Ultramicroscopy ; 110(7): 815-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20188475

RESUMEN

The short range order in amorphous and fullerene-like carbon compounds has been characterized by selected area electron diffraction (SAED) patterns and compared with simulations of model nanoclusters. Broad rings in SAED pattern from fullerene-like CN(x) at approximately 1.2, approximately 2, and approximately 3.5A indicate short-range order similar to that in graphite, but peak shifts indicate sheet curvature in agreement with high-resolution transmission electron microscopy images. Fullerene-like CP(x) exhibits rings at approximately 1.6 and 2.6A, which can be explained if it consists of fragments with short-range order and high curvature similar to that of C(20).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA