Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Am J Physiol Cell Physiol ; 319(1): C183-C193, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32432925

RESUMEN

The vasa vasorum (VV), the microvascular network around large vessels, has been recognized as an important contributor to the pathological vascular remodeling in cardiovascular diseases. In bovine and rat models of hypoxic pulmonary hypertension (PH), we have previously shown that chronic hypoxia profoundly increased pulmonary artery (PA) VV permeability, associated with infiltration of inflammatory and progenitor cells in the arterial wall, perivascular inflammation, and structural vascular remodeling. Extracellular adenosine was shown to exhibit a barrier-protective effect on VV endothelial cells (VVEC) via cAMP-independent mechanisms, which involved adenosine A1 receptor-mediated activation of Gi-phosphoinositide 3-kinase-Akt pathway and actin cytoskeleton remodeling. Using VVEC isolated from the adventitia of calf PA, in this study we investigated in more detail the mechanisms linking Gi activation to downstream barrier protection pathways. Using a small-interference RNA (siRNA) technique and transendothelial electrical resistance assay, we found that the adaptor protein, engulfment and cell motility 1 (ELMO1), the tyrosine phosphatase Src homology region 2 domain-containing phosphatase-2, and atypical Gi- and Rac1-mediated protein kinase A activation are implicated in VVEC barrier enhancement. In contrast, the actin-interacting GTP-binding protein, girdin, and the p21-activated kinase 1 downstream target, LIM kinase, are not involved in this response. In addition, adenosine-dependent cytoskeletal rearrangement involves activation of cofilin and inactivation of ezrin-radixin-moesin regulatory cytoskeletal proteins, consistent with a barrier-protective mechanism. Collectively, our data indicate that targeting adenosine receptors and downstream barrier-protective pathways in VVEC may have a potential translational significance in developing pharmacological approach for the VV barrier protection in PH.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Vasa Vasorum/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Adenosina/farmacología , Animales , Bovinos , Células Endoteliales/efectos de los fármacos , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Masculino , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Vasa Vasorum/efectos de los fármacos
2.
Microcirculation ; 27(6): e12624, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32352607

RESUMEN

OBJECTIVE: Inhibition of adenosine kinase (ADK), via augmenting endogenous adenosine levels exerts cardiovascular protection. We tested the hypothesis that ADK inhibition improves microvascular dilator and left ventricle (LV) contractile function under metabolic or hemodynamic stress. METHODS AND RESULTS: In Obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid rats, treatment with the selective ADK inhibitor, ABT-702 (1.5 mg/kg, intraperitoneal injections for 8-week) restored acetylcholine-, sodium nitroprusside-, and adenosine-induced dilations in isolated coronary arterioles, an effect that was accompanied by normalized end-diastolic pressure (in mm Hg, Lean: 3.4 ± 0.6, Obese: 17.6 ± 4.2, Obese + ABT: 6.6 ± 1.4) and LV relaxation constant, Tau (in ms, Lean: 6.9 ± 1.5, Obese: 13.9 ± 1.7, Obese + ABT: 6.0 ± 1.1). Mice with vascular endothelium selective ADK deletion (ADKVEC KO) exhibited an enhanced dilation to acetylcholine in isolated gracilis muscle (lgEC50 WT: -8.2 ± 0.1, ADKVEC KO: -8.8 ± 0.1, P < .05) and mesenteric arterioles (lgEC50 WT: -7.4 ± 0.2, ADKVEC KO: -8.1 ± 1.2, P < .05) when compared to wild-type (WT) mice, whereas relaxation of the femoral artery and aorta (lgEC50 WT: -7.03 ± 0.6, ADKVEC KO: -7.05 ± 0.8) was similar in the two groups. Wild-type mice progressively developed LV systolic and diastolic dysfunction when they underwent transverse aortic constriction surgery, whereas ADKVEC -KO mice displayed a lesser degree in decline of LV function. CONCLUSIONS: Our results indicate that ADK inhibition selectively enhances microvascular vasodilator function, whereby it improves LV perfusion and LV contractile function under metabolic and hemodynamic stress.


Asunto(s)
Adenosina Quinasa/antagonistas & inhibidores , Microvasos/enzimología , Morfolinas/farmacología , Pirimidinas/farmacología , Vasodilatación/efectos de los fármacos , Disfunción Ventricular Izquierda/enzimología , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Animales , Diástole/efectos de los fármacos , Diástole/genética , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Zucker , Vasodilatación/genética , Disfunción Ventricular Izquierda/genética
3.
Kidney Int ; 95(6): 1359-1372, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30905471

RESUMEN

In mice, the initial stage of nephrotoxic serum-induced nephritis (NTN) mimics antibody-mediated human glomerulonephritis. Local immune deposits generate tumor necrosis factor (TNF), which activates pro-inflammatory pathways in glomerular endothelial cells (GECs) and podocytes. Because TNF receptors mediate antibacterial defense, existing anti-TNF therapies can promote infection; however, we have previously demonstrated that different functional domains of TNF may have opposing effects. The TIP peptide mimics the lectin-like domain of TNF, and has been shown to blunt inflammation in acute lung injury without impairing TNF receptor-mediated antibacterial activity. We evaluated the impact of TIP peptide in NTN. Intraperitoneal administration of TIP peptide reduced inflammation, proteinuria, and blood urea nitrogen. The protective effect was blocked by the cyclooxygenase inhibitor indomethacin, indicating involvement of prostaglandins. Targeted glomerular delivery of TIP peptide improved pathology in moderate NTN and reduced mortality in severe NTN, indicating a local protective effect. We show that TIP peptide activates the epithelial sodium channel(ENaC), which is expressed by GEC, upon binding to the channel's α subunit. In vitro, TNF treatment of GEC activated pro-inflammatory pathways and decreased the generation of prostaglandin E2 and nitric oxide, which promote recovery from NTN. TIP peptide counteracted these effects. Despite the capacity of TIP peptide to activate ENaC, it did not increase mean arterial blood pressure in mice. In the later autologous phase of NTN, TIP peptide blunted the infiltration of Th17 cells. By countering the deleterious effects of TNF through direct actions in GEC, TIP peptide could provide a novel strategy to treat glomerular inflammation.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Glomerulonefritis/tratamiento farmacológico , Glomérulos Renales/efectos de los fármacos , Péptidos Cíclicos/administración & dosificación , Proteinuria/tratamiento farmacológico , Animales , Nitrógeno de la Urea Sanguínea , Línea Celular , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Femenino , Glomerulonefritis/sangre , Glomerulonefritis/inmunología , Glomerulonefritis/patología , Humanos , Inyecciones Intraperitoneales , Glomérulos Renales/citología , Glomérulos Renales/patología , Ratones , Óxido Nítrico/metabolismo , Técnicas de Placa-Clamp , Cultivo Primario de Células , Proteinuria/sangre , Proteinuria/inmunología , Proteinuria/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(7): 1895-900, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831066

RESUMEN

Dyslipidemia associated with triglyceride-rich lipoproteins (TRLs) represents an important residual risk factor for cardiovascular and chronic kidney disease in patients with type 1 diabetes (T1D). Levels of growth hormone (GH) are elevated in T1D, which aggravates both hyperglycemia and dyslipidemia. The hypothalamic growth hormone-releasing hormone (GHRH) regulates the release of GH by the pituitary but also exerts separate actions on peripheral GHRH receptors, the functional role of which remains elusive in T1D. In a rat model of streptozotocin (STZ)-induced T1D, GHRH receptor expression was found to be up-regulated in the distal small intestine, a tissue involved in chylomicron synthesis. Treatment of T1D rats with a GHRH antagonist, MIA-602, at a dose that did not affect plasma GH levels, significantly reduced TRL, as well as markers of renal injury, and improved endothelial-dependent vasorelaxation. Glucagon-like peptide 1 (GLP-1) reduces hyperglucagonemia and postprandial TRL, the latter in part through a decreased synthesis of apolipoprotein B-48 (ApoB-48) by intestinal cells. Although plasma GLP-1 levels were elevated in diabetic animals, this was accompanied by increased rather than reduced glucagon levels, suggesting impaired GLP-1 signaling. Treatment with MIA-602 normalized GLP-1 and glucagon to control levels in T1D rats. MIA-602 also decreased secretion of ApoB-48 from rat intestinal epithelial cells in response to oleic acid stimulation in vitro, in part through a GLP-1-dependent mechanism. Our findings support the hypothesis that antagonizing the signaling of GHRH in T1D may improve GLP-1 function in the small intestine, which, in turn, diminishes TRL and reduces renal and vascular complications.


Asunto(s)
Diabetes Mellitus Tipo 1/fisiopatología , Modelos Animales de Enfermedad , Dislipidemias/fisiopatología , Hormona Liberadora de Hormona del Crecimiento/fisiología , Animales , Dislipidemias/terapia , Hormona Liberadora de Hormona del Crecimiento/antagonistas & inhibidores , Intestino Delgado/metabolismo , Masculino , Ratas , Ratas Wistar , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Estreptozocina
5.
J Biol Chem ; 291(45): 23440-23451, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27645999

RESUMEN

Regulation of the epithelial sodium channel (ENaC), which regulates fluid homeostasis and blood pressure, is complex and remains incompletely understood. The TIP peptide, a mimic of the lectin-like domain of TNF, activates ENaC by binding to glycosylated residues in the extracellular loop of ENaC-α, as well as to a hitherto uncharacterized internal site. Molecular docking studies suggested three residues, Val567, Glu568, and Glu571, located at the interface between the second transmembrane and C-terminal domains of ENaC-α, as a critical site for binding of the TIP peptide. We generated Ala replacement mutants in this region of ENaC-α and examined its interaction with TIP peptide (3M, V567A/E568A/E571A; 2M, V567A/E568A; and 1M, E571A). 3M and 2M ENaC-α, but not 1M ENaC-α, displayed significantly reduced binding capacity to TIP peptide and to TNF. When overexpressed in H441 cells, 3M mutant ENaC-α formed functional channels with similar gating and density characteristics as the WT subunit and efficiently associated with the ß and γ subunits in the plasma membrane. We subsequently assayed for increased open probability time and membrane expression, both of which define ENaC activity, following addition of TIP peptide. TIP peptide increased open probability time in H441 cells overexpressing wild type and 1M ENaC-α channels, but not 3M or 2M ENaC-α channels. On the other hand, TIP peptide-mediated reduction in ENaC ubiquitination was similar in cells overexpressing either WT or 3M ENaC-α subunits. In summary, this study has identified a novel site in ENaC-α that is crucial for activation of the open probability of the channel, but not membrane expression, by the lectin-like domain of TNF.


Asunto(s)
Agonistas del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/metabolismo , Péptidos Cíclicos/farmacología , Línea Celular Tumoral , Canales Epiteliales de Sodio/química , Canales Epiteliales de Sodio/genética , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Mutación Puntual , Dominios Proteicos/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ubiquitinación/efectos de los fármacos
6.
Am J Physiol Heart Circ Physiol ; 308(5): H376-85, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25527780

RESUMEN

The type 1 angiotensin II (ANG II) receptor (AT1R) undergoes internalization following stimulation by ANG II. Internalization reduces cell surface AT1Rs, and it is required for AT1R resensitization. In this process AT1R may interact with caveolin-1 (Cav1), the main scaffolding protein of caveolae. We hypothesized that the interaction between Cav1 and AT1R delays AT1R resensitization and thereby prevents sustained ANG II-induced resistance artery (RA) constriction under normal conditions and in experimental obesity. In rat and mouse skeletal muscle RA (diameter: ∼90-120 µm) ANG II-induced constrictions were reduced upon repeated (30-min apart) administrations. Upon disruption of caveolae with methyl-ß-cyclodextrin or in RA of Cav1 knockout mice, repeated ANG II applications resulted in essentially maintained constrictions. In vascular smooth muscle cells, AT1R interacted with Cav1, and the degree of cell surface interactions was reduced by long-term (15-min), but not short-term (2-min), exposure to ANG II. When Cav1 was silenced, the amount of membrane-associated AT1R was significantly reduced by a short-term ANG II exposure. Moreover, Cav1 knockout mice fed a high-fat diet exhibited augmented and sustained RA constriction to ANG II and had elevated systemic blood pressure, when compared with normal or high-fat fed wild-type mice. Thus, Cav1, through a direct interaction, delays internalization and subsequent resensitization of AT1R. We suggest that this mechanism prevents sustained ANG II-induced RA constriction and elevated systemic blood pressure in diet-induced obesity.


Asunto(s)
Arterias/fisiopatología , Caveolina 2/metabolismo , Hipertensión/metabolismo , Obesidad/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Resistencia Vascular , Vasoconstricción , Angiotensina II/farmacología , Animales , Arterias/efectos de los fármacos , Arterias/metabolismo , Caveolas/metabolismo , Caveolina 2/genética , Membrana Celular/metabolismo , Hipertensión/etiología , Hipertensión/fisiopatología , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Obesidad/complicaciones , Unión Proteica , Ratas , Ratas Wistar , Receptor de Angiotensina Tipo 1/agonistas , Vasoconstrictores/farmacología
7.
Am J Respir Crit Care Med ; 190(5): 522-32, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25029038

RESUMEN

RATIONALE: Alveolar liquid clearance is regulated by Na(+) uptake through the apically expressed epithelial sodium channel (ENaC) and basolaterally localized Na(+)-K(+)-ATPase in type II alveolar epithelial cells. Dysfunction of these Na(+) transporters during pulmonary inflammation can contribute to pulmonary edema. OBJECTIVES: In this study, we sought to determine the precise mechanism by which the TIP peptide, mimicking the lectin-like domain of tumor necrosis factor (TNF), stimulates Na(+) uptake in a homologous cell system in the presence or absence of the bacterial toxin pneumolysin (PLY). METHODS: We used a combined biochemical, electrophysiological, and molecular biological in vitro approach and assessed the physiological relevance of the lectin-like domain of TNF in alveolar liquid clearance in vivo by generating triple-mutant TNF knock-in mice that express a mutant TNF with deficient Na(+) uptake stimulatory activity. MEASUREMENTS AND MAIN RESULTS: TIP peptide directly activates ENaC, but not the Na(+)-K(+)-ATPase, upon binding to the carboxy-terminal domain of the α subunit of the channel. In the presence of PLY, a mediator of pneumococcal-induced pulmonary edema, this binding stabilizes the ENaC-PIP2-MARCKS complex, which is necessary for the open probability conformation of the channel and preserves ENaC-α protein expression, by means of blunting the protein kinase C-α pathway. Triple-mutant TNF knock-in mice are more prone than wild-type mice to develop edema with low-dose intratracheal PLY, correlating with reduced pulmonary ENaC-α subunit expression. CONCLUSIONS: These results demonstrate a novel TNF-mediated mechanism of direct ENaC activation and indicate a physiological role for the lectin-like domain of TNF in the resolution of alveolar edema during inflammation.


Asunto(s)
Agonistas del Canal de Sodio Epitelial/metabolismo , Canales Epiteliales de Sodio/metabolismo , Péptidos Cíclicos/metabolismo , Alveolos Pulmonares/metabolismo , Edema Pulmonar/metabolismo , Estreptolisinas , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Proteínas Bacterianas , Agonistas del Canal de Sodio Epitelial/química , Canales Epiteliales de Sodio/química , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Péptidos Cíclicos/química , Alveolos Pulmonares/microbiología , Edema Pulmonar/microbiología , Factor de Necrosis Tumoral alfa/química
8.
Microvasc Res ; 89: 86-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23721711

RESUMEN

Reversible Ser/Thr phosphorylation of cytoskeletal and adherent junction (AJ) proteins has a critical role in the regulation of endothelial cell (EC) barrier function. We have demonstrated earlier that protein phosphatase 2A (PP2A) activity is important in EC barrier integrity. In the present work, macro- and microvascular EC were examined and we provided further evidence on the significance of PP2A in the maintenance of EC cytoskeleton and barrier function with special focus on the Bα (regulatory) subunit of PP2A. Immunofluorescent staining revealed that the inhibition of PP2A results in changes in the organization of EC cytoskeleton as microtubule dissolution and actin re-arrangement were detected. Depletion of Bα regulatory subunit of PP2A had similar effect on the cytoskeleton structure of the cells. Furthermore, transendothelial electric resistance measurements demonstrated significantly slower barrier recovery of Bα depleted EC after thrombin treatment. AJ proteins, VE-cadherin and ß-catenin, were detected along with Bα in pull-down assay. Also, the inhibition of PP2A (by okadaic acid or fostriecin) or depletion of Bα caused ß-catenin translocation from the membrane to the cytoplasm in parallel with its phosphorylation on Ser552. In conclusion, our data suggest that the A/Bα/C holoenzyme form of PP2A is essential in EC barrier integrity both in micro- and macrovascular EC.


Asunto(s)
Uniones Adherentes/fisiología , Citoesqueleto/metabolismo , Células Endoteliales/enzimología , Regulación Enzimológica de la Expresión Génica , Proteína Fosfatasa 2/metabolismo , Actinas/metabolismo , Adhesión Celular , Células Cultivadas , Citoplasma/metabolismo , Citoesqueleto/química , Células HEK293 , Humanos , Pulmón/patología , Microcirculación , Fosforilación , Estructura Terciaria de Proteína , Arteria Pulmonar/citología , ARN Interferente Pequeño/metabolismo , Trombina/química , Factores de Tiempo
9.
J Cell Physiol ; 227(4): 1701-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21678426

RESUMEN

The phosphorylation status of myosin light chain (MLC) is regulated by both MLC kinases and type 1 Ser/Thr phosphatase (PPase 1), MLC phosphatase (MLCP) activities. The activity of the catalytic subunit of MLCP (CS1ß) towards myosin depends on its associated regulatory subunit, namely myosin PPase targeting subunit 1 (MYPT1). Our previously published data strongly suggested the involvement of MLCP in endothelial cell (EC) barrier regulation. In this study, our new data demonstrate that inhibition of MLCP by either CS1ß or MYPT1 siRNA-based depletion results in significant attenuation of purine nucleotide (ATP and adenosine)-induced EC barrier enhancement. Consistent with the data, thrombin-induced EC F-actin stress fiber formation and permeability increase were attenuated by the ectopic expression of constitutively active (C/A) MYPT1. The data demonstrated for the first time direct involvement of MLCP in EC barrier enhancement/protection. Cloning of MYPT1 in human pulmonary artery EC (HPAEC) revealed the presence of two MYPT1 isoforms, long and variant 2 (V2) lacking 56 amino acids from 553 to 609 of human MYPT1 long, which were previously identified in HeLa and HEK 293 cells. Our data demonstrated that in Cos-7 cells ectopically expressed EC MYPT1 isoforms co-immunoprecipitated with intact CS1ß suggesting the importance of PPase 1 activity for the formation of functional complex of MYPT1/CS1ß. Interestingly, MYPT1 V2 shows decreased binding affinity compared to MYPT1 long for radixin (novel MLCP substrate and a member of ERM family proteins). These results suggest functional difference between EC MYPT1 isoforms in the regulation of MLCP activity and cytoskeleton.


Asunto(s)
Células Endoteliales/enzimología , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Animales , Secuencia de Bases , Células COS , Permeabilidad Capilar , Células Cultivadas , Chlorocebus aethiops , Clonación Molecular , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatasa de Miosina de Cadena Ligera/química , Fosfatasa de Miosina de Cadena Ligera/genética , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , ARN Interferente Pequeño/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Factores de Transcripción/metabolismo
10.
Circ Heart Fail ; 12(8): e005762, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31525084

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is often manifested as impaired cardiovascular reserve. We sought to determine if conducted vasodilation, which coordinates microvascular resistance longitudinally to match tissue metabolic demand, becomes compromised in HFpEF. We hypothesized that the metabolic vasodilator adenosine facilitates and that inhibition of ADK (adenosine kinase) augments conducted vasodilation for a more efficient myocardial perfusion and improved left ventricle (LV) diastolic function in HFpEF. METHODS AND RESULTS: We assessed conducted vasodilation in obese ZSF1 rats that develop LV diastolic dysfunction and is used to model human HFpEF. Additionally, conducted vasodilation was measured in arterioles isolated from the right atrial appendages of patients with HFpEF. We found a markedly reduced conducted vasodilation both in obese ZSF1 rats and in patients with HFpEF. Impaired conducted vasodilation was accompanied by increased vascular ADK expression. Isolated rat and human arterioles incubated with adenosine (10 nmol/L) or ADK inhibitor ABT-702 (0.1 µmol/L) both displayed augmented conducted vasodilation. Treatment of obese ZSF1 rats with ABT-702 (1.5 mg/kg, IP for 8 weeks) prevented LV diastolic dysfunction, and in a crossover design augmented conducted vasodilation and improved LV diastolic function. ABT-702 treated obese ZSF1 rats exhibited reduced expression of myocardial carbonic anhydrase 9 and collagen, surrogate markers of myocardial hypoxia. CONCLUSIONS: Upregulation of vascular ADK mitigates adenosine-facilitated conducted vasodilation in obese ZSF1 rats and in patients with HFpEF. We propose that pharmacological inhibition of ADK could be beneficial for therapeutic augmentation of conducted vasodilation, thereby improving tissue perfusion and LV diastolic function in HFpEF.


Asunto(s)
Adenosina Quinasa/antagonistas & inhibidores , Insuficiencia Cardíaca/complicaciones , Morfolinas/farmacología , Pirimidinas/farmacología , Volumen Sistólico/fisiología , Vasodilatación/efectos de los fármacos , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/fisiología , Animales , Diástole , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Microvasos/efectos de los fármacos , Microvasos/fisiopatología , Persona de Mediana Edad , Ratas , Ratas Zucker , Resistencia Vascular/efectos de los fármacos , Vasodilatación/fisiología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos
11.
Toxins (Basel) ; 10(2)2018 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-29439494

RESUMEN

Pulmonary permeability edema is characterized by reduced alveolar Na⁺ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na⁺ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel's expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na⁺ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema.


Asunto(s)
Toxinas Bacterianas/toxicidad , Canales Epiteliales de Sodio/fisiología , Proteínas de Choque Térmico/toxicidad , Proteínas Hemolisinas/toxicidad , Péptidos/farmacología , Péptidos/uso terapéutico , Edema Pulmonar/tratamiento farmacológico , Animales , Bronquios/citología , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Proteína Quinasa C-alfa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
12.
Front Pharmacol ; 8: 85, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28286482

RESUMEN

The synthetically produced cyclic peptides solnatide (a.k.a. TIP or AP301) and its congener AP318, whose molecular structures mimic the lectin-like domain of human tumor necrosis factor (TNF), have been shown to activate the epithelial sodium channel (ENaC) in various cell- and animal-based studies. Loss-of-ENaC-function leads to a rare, life-threatening, salt-wasting syndrome, pseudohypoaldosteronism type 1B (PHA1B), which presents with failure to thrive, dehydration, low blood pressure, anorexia and vomiting; hyperkalemia, hyponatremia and metabolic acidosis suggest hypoaldosteronism, but plasma aldosterone and renin activity are high. The aim of the present study was to investigate whether the ENaC-activating effect of solnatide and AP318 could rescue loss-of-function phenotype of ENaC carrying mutations at conserved amino acid positions observed to cause PHA1B. The macroscopic Na+ current of all investigated mutants was decreased compared to wild type ENaC when measured in whole-cell patch clamp experiments, and a great variation in the membrane abundance of different mutant ENaCs was observed with Western blotting experiments. However, whatever mechanism leads to loss-of-function of the studied ENaC mutations, the synthetic peptides solnatide and AP318 could restore ENaC function up to or even higher than current levels of wild type ENaC. As therapy of PHA1B is only symptomatic so far, the peptides solnatide and AP318, which directly target ENaC, are promising candidates for the treatment of the channelopathy-caused disease PHA1B.

13.
Front Immunol ; 8: 601, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611771

RESUMEN

Previous in vitro studies have indicated that tumor necrosis factor (TNF) activates amiloride-sensitive epithelial sodium channel (ENaC) current through its lectin-like (TIP) domain, since cyclic peptides mimicking the TIP domain (e.g., solnatide), showed ENaC-activating properties. In the current study, the effects of TNF and solnatide on individual ENaC subunits or ENaC carrying mutated glycosylation sites in the α-ENaC subunit were compared, revealing a similar mode of action for TNF and solnatide and corroborating the previous assumption that the lectin-like domain of TNF is the relevant molecular structure for ENaC activation. Accordingly, TNF enhanced ENaC current by increasing open probability of the glycosylated channel, position N511 in the α-ENaC subunit being identified as the most important glycosylation site. TNF significantly increased Na+ current through ENaC comprising only the pore forming subunits α or δ, was less active in ENaC comprising only ß-subunits, and showed no effect on ENaC comprising γ-subunits. TNF did not increase the membrane abundance of ENaC subunits to the extent observed with solnatide. Since the α-subunit is believed to play a prominent role in the ENaC current activating effect of TNF and TIP, we investigated whether TNF and solnatide can enhance αßγ-ENaC current in α-ENaC loss-of-function frameshift mutants. The efficacy of solnatide has been already proven in pathological conditions involving ENaC in phase II clinical trials. The frameshift mutations αI68fs, αT169fs, αP197fs, αE272fs, αF435fs, αR438fs, αY447fs, αR448fs, αS452fs, and αT482fs have been reported to cause pseudohypoaldosteronism type 1B (PHA1B), a rare, life-threatening, salt-wasting disease, which hitherto has been treated only symptomatically. In a heterologous expression system, all frameshift mutants showed significantly reduced amiloride-sensitive whole-cell current compared to wild type αßγ-ENaC, whereas membrane abundance varied between mutants. Solnatide restored function in α-ENaC frameshift mutants to current density levels of wild type ENaC or higher despite their lacking a binding site for solnatide, previously located to the region between TM2 and the C-terminus of the α-subunit. TNF similarly restored current density to wild type levels in the mutant αR448fs. Activation of ßγ-ENaC may contribute to this moderate current enhancement, but whatever the mechanism, experimental data indicate that solnatide could be a new strategy to treat PHA1B.

14.
Front Immunol ; 8: 842, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28785264

RESUMEN

BACKGROUND: Streptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar-capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function. METHODS: The presence of α, ß, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α. RESULTS: HL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance. CONCLUSION: Our results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia.

15.
Biochem Pharmacol ; 98(4): 740-53, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26254591

RESUMEN

Dysfunction of the epithelial sodium channel (ENaC), which regulates salt and water homeostasis in epithelia, causes several human pathological conditions, including pulmonary oedema. This is a potentially lethal complication of acute lung injury at least partially caused by dysfunctional alveolar liquid clearance, which in turn impairs alveolar gas exchange. Solnatide (named TIP-peptide, AP301), a 17 residue peptide mimicking the lectin-like domain of TNF has been shown to activate ENaC in several experimental animal models of acute lung injury and is being evaluated as a potential therapy for pulmonary oedema. The peptide has recently completed phase 1 and 2a clinical trials. In this study, we identify a glycosylation-dependent mechanism that preserves ENaC function and expression. Since our previous data suggested that the pore-forming subunits of ENaC are essential for maximal current activation by solnatide, we performed single- and multi-N-glycosylation site mutations in αN232,293,312,397,511Q- and δN166,211,384Q-subunits, in order to identify crucial residues for interaction with solnatide within the extracellular loop of the channel. Additionally, we generated αL576X and αN232,293,312,397,511Q,L576X deletion mutants of ENaC-α, since we have previously demonstrated that the carboxy terminal domain of this subunit is also involved in its interaction with solnatide. In cells expressing αN232,293,312,397,511Q,L576Xßγ-hENaC or δN166,311,384Q,D552Xßγ-hENaC activation by solnatide, as measured in whole cell patch clamp mode, was completely abolished, whereas it was attenuated in αL576Xßγ-hENaC- and δD552Xßγ-hENaC-expressing cells. Taken together, our findings delineate an N-glycan dependent interaction between the TIP-peptide and ENaC leading to normalization of both sodium and fluid absorption in oedematous alveoli to non-oedematous levels.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Glicosilación , Células HEK293 , Humanos
16.
Diabetes ; 63(4): 1381-93, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24353182

RESUMEN

Peroxynitrite (ONOO(-)) contributes to coronary microvascular dysfunction in diabetes mellitus (DM). We hypothesized that in DM, ONOO(-) interferes with the function of coronary endothelial caveolae, which plays an important role in nitric oxide (NO)-dependent vasomotor regulation. Flow-mediated dilation (FMD) of coronary arterioles was investigated in DM (n = 41) and non-DM (n = 37) patients undergoing heart surgery. NO-mediated coronary FMD was significantly reduced in DM patients, which was restored by ONOO(-) scavenger, iron-(III)-tetrakis(N-methyl-4'pyridyl)porphyrin-pentachloride, or uric acid, whereas exogenous ONOO(-) reduced FMD in non-DM subjects. Immunoelectron microscopy demonstrated an increased 3-nitrotyrosine formation (ONOO(-)-specific protein nitration) in endothelial plasma membrane in DM, which colocalized with caveolin-1 (Cav-1), the key structural protein of caveolae. The membrane-localized Cav-1 was significantly reduced in DM and also in high glucose-exposed coronary endothelial cells. We also found that DM patients exhibited a decreased number of endothelial caveolae, whereas exogenous ONOO(-) reduced caveolae number. Correspondingly, pharmacological (methyl-ß-cyclodextrin) or genetic disruption of caveolae (Cav-1 knockout mice) abolished coronary FMD, which was rescued by sepiapterin, the stable precursor of NO synthase (NOS) cofactor, tetrahydrobiopterin. Sepiapterin also restored coronary FMD in DM patients. Thus, we propose that ONOO(-) selectively targets and disrupts endothelial caveolae, which contributes to NOS uncoupling, and, hence, reduced NO-mediated coronary vasodilation in DM patients.


Asunto(s)
Caveolas/efectos de los fármacos , Diabetes Mellitus/fisiopatología , Ácido Peroxinitroso/farmacología , Vasodilatación/efectos de los fármacos , Anciano , Animales , Arteriolas/fisiopatología , Caveolina 1/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Pterinas/farmacología , Flujo Sanguíneo Regional , Tirosina/análogos & derivados , beta-Ciclodextrinas/farmacología
17.
Front Physiol ; 5: 259, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25076911

RESUMEN

RATIONALE: Antibiotic treatment of patients infected with G(-) or G(+) bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. METHODS: Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-α activity were assessed by Western blotting. RESULTS: GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-α activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. CONCLUSIONS: GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-α-induced pathway in the presence of PLY, the former of which dominates the latter.

18.
Front Immunol ; 4: 228, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23966993

RESUMEN

The integrity of epithelial and endothelial barriers in the lower airspaces of the lungs has to be tightly regulated, in order to prevent leakage and to assure efficient gas exchange between the alveoli and capillaries. Both G(-) and G(+) bacterial toxins, such as lipopolysaccharide and pneumolysin, respectively, can be released in high concentrations within the pulmonary compartments upon antibiotic treatment of patients suffering from acute respiratory distress syndrome (ARDS) or severe pneumonia. These toxins are able to impair endothelial barrier function, either directly, or indirectly, by induction of pro-inflammatory mediators and neutrophil sequestration. Toxin-induced endothelial hyperpermeability can involve myosin light chain phosphorylation and/or microtubule rearrangement. Endothelial nitric oxide synthase (eNOS) was proposed to be a guardian of basal barrier function, since eNOS knock-out mice display an impaired expression of inter-endothelial junction proteins and as such an increased vascular permeability, as compared to wild type mice. The enzyme arginase, the activity of which can be regulated by the redox status of the cell, exists in two isoforms - arginase 1 (cytosolic) and arginase 2 (mitochondrial) - both of which can be expressed in lung microvascular endothelial cells. Upon activation, arginase competes with eNOS for the substrate l-arginine, as such impairing eNOS-dependent NO generation and promoting reactive oxygen species generation by the enzyme. This mini-review will discuss recent findings regarding the interaction between bacterial toxins and arginase during acute lung injury and will as such address the role of arginase in bacterial toxin-induced pulmonary endothelial barrier dysfunction.

19.
Toxins (Basel) ; 5(7): 1244-60, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23860351

RESUMEN

Severe pneumonia is the main single cause of death worldwide in children under five years of age. The main etiological agent of pneumonia is the G+ bacterium Streptococcus pneumoniae, which accounts for up to 45% of all cases. Intriguingly, patients can still die days after commencing antibiotic treatment due to the development of permeability edema, although the pathogen was successfully cleared from their lungs. This condition is characterized by a dramatically impaired alveolar epithelial-capillary barrier function and a dysfunction of the sodium transporters required for edema reabsorption, including the apically expressed epithelial sodium channel (ENaC) and the basolaterally expressed sodium potassium pump (Na+-K+-ATPase). The main agent inducing this edema formation is the virulence factor pneumolysin, a cholesterol-binding pore-forming toxin, released in the alveolar compartment of the lungs when pneumococci are being lysed by antibiotic treatment or upon autolysis. Sub-lytic concentrations of pneumolysin can cause endothelial barrier dysfunction and can impair ENaC-mediated sodium uptake in type II alveolar epithelial cells. These events significantly contribute to the formation of permeability edema, for which currently no standard therapy is available. This review focuses on discussing some recent developments in the search for the novel therapeutic agents able to improve lung function despite the presence of pore-forming toxins. Such treatments could reduce the potentially lethal complications occurring after antibiotic treatment of patients with severe pneumonia.


Asunto(s)
Pulmón/microbiología , Neumonía/terapia , Streptococcus pneumoniae/patogenicidad , Estreptolisinas/toxicidad , Animales , Proteínas Bacterianas/toxicidad , Preescolar , Modelos Animales de Enfermedad , Hormona del Crecimiento/metabolismo , Humanos , Sistema Inmunológico/microbiología , Lectinas/uso terapéutico , Pulmón/patología , Neumonía/microbiología , Edema Pulmonar/microbiología , Edema Pulmonar/terapia , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/metabolismo , Factores de Virulencia
20.
Biochimie ; 93(7): 1139-45, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21466834

RESUMEN

TIMAP, TGF-ß inhibited, membrane-associated protein, is highly abundant in endothelial cells (EC). We have shown earlier the involvement of TIMAP in PKA-mediated ERM (ezrin-radixin-moesin) dephosphorylation as part of EC barrier protection by TIMAP (Csortos et al., 2008). Emerging data demonstrate the regulatory role of TIMAP on protein phosphatase 1 (PP1) activity. We provide here evidence for specific interaction (K(a) = 1.80 × 10(6) M(-1)) between non-phosphorylated TIMAP and the catalytic subunit of PP1 (PP1c) by surface plasmon resonance based binding studies. Thiophosphorylation of TIMAP by PKA, or sequential thiophosphorylation by PKA and GSK3ß slightly modifies the association constant for the interaction of TIMAP with PP1c and decreases the rate of dissociation. However, dephosphorylation of phospho-moesin substrate by PP1cß is inhibited to different extent in the presence of non- (~60% inhibition), mono- (~50% inhibition) or double-thiophosphorylated (<10% inhibition) form of TIMAP. Our data suggest that double-thiophosphorylation of TIMAP has minor effect on its binding ability to PP1c, but considerably attenuates its inhibitory effect on the activity of PP1c. PKA activation by forskolin treatment of EC prevented thrombin evoked barrier dysfunction and ERM phosphorylation at the cell membrane (Csortos et al., 2008). With the employment of specific GSK3ß inhibitor it is shown here that PKA activation is followed by GSK3ß activation in bovine pulmonary EC and both of these activations are required for the rescuing effect of forskolin in thrombin treated EC. Our results suggest that the forskolin induced PKA/GSK3ß activation protects the EC barrier via TIMAP-mediated decreasing of the ERM phosphorylation level.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Fosfatasa 1/metabolismo , Animales , Western Blotting , Línea Celular , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas del Citoesqueleto/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Cinética , Proteínas de la Membrana/genética , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/genética , Resonancia por Plasmón de Superficie , Tiazoles/farmacología , Urea/análogos & derivados , Urea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA