Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Q Rev Biophys ; 54: e4, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33704040

RESUMEN

CryoEM has become the method of choice for determining the structure of large macromolecular complexes in multiple conformations, at resolutions where unambiguous atomic models can be built. Two effects that have limited progress in single-particle cryoEM are (i) beam-induced movement during image acquisition and (ii) protein adsorption and denaturation at the air-water interface during specimen preparation. While beam-induced movement now appears to have been resolved by all-gold specimen support grids with very small holes, surface effects at the air-water interface are a persistent problem. Strategies to overcome these effects include the use of alternative support films and new techniques for specimen deposition. We examine the future potential of recording perfect images of biological samples for routine structure determination at atomic resolution.


Asunto(s)
Proteínas , Agua , Adsorción , Microscopía por Crioelectrón , Sustancias Macromoleculares
2.
Subcell Biochem ; 87: 167-227, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29464561

RESUMEN

Mitochondria are the power stations of the eukaryotic cell, using the energy released by the oxidation of glucose and other sugars to produce ATP. Electrons are transferred from NADH, produced in the citric acid cycle in the mitochondrial matrix, to oxygen by a series of large protein complexes in the inner mitochondrial membrane, which create a transmembrane electrochemical gradient by pumping protons across the membrane. The flow of protons back into the matrix via a proton channel in the ATP synthase leads to conformational changes in the nucleotide binding pockets and the formation of ATP. The three proton pumping complexes of the electron transfer chain are NADH-ubiquinone oxidoreductase or complex I, ubiquinone-cytochrome c oxidoreductase or complex III, and cytochrome c oxidase or complex IV. Succinate dehydrogenase or complex II does not pump protons, but contributes reduced ubiquinone. The structures of complex II, III and IV were determined by x-ray crystallography several decades ago, but complex I and ATP synthase have only recently started to reveal their secrets by advances in x-ray crystallography and cryo-electron microscopy. The complexes I, III and IV occur to a certain extent as supercomplexes in the membrane, the so-called respirasomes. Several hypotheses exist about their function. Recent cryo-electron microscopy structures show the architecture of the respirasome with near-atomic detail. ATP synthase occurs as dimers in the inner mitochondrial membrane, which by their curvature are responsible for the folding of the membrane into cristae and thus for the huge increase in available surface that makes mitochondria the efficient energy plants of the eukaryotic cell.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Humanos
3.
J Biol Chem ; 291(28): 14448-56, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27226590

RESUMEN

Secretins are versatile outer membrane pores used by many bacteria to secrete proteins, toxins, or filamentous phages; extrude type IV pili (T4P); or take up DNA. Extrusion of T4P and natural transformation of DNA in the thermophilic bacterium Thermus thermophilus requires a unique secretin complex comprising six stacked rings, a membrane-embedded cone structure, and two gates that open and close a central channel. To investigate the role of distinct domains in ring and gate formation, we examined a set of deletion derivatives by cryomicroscopy techniques. Here we report that maintaining the N0 ring in the deletion derivatives led to stable PilQ complexes. Analyses of the variants unraveled that an N-terminal domain comprising a unique ßßßαß fold is essential for the formation of gate 2. Furthermore, we identified four ßαßßα domains essential for the formation of the N2 to N5 rings. Mutant studies revealed that deletion of individual ring domains significantly reduces piliation. The N1, N2, N4, and N5 deletion mutants were significantly impaired in T4P-mediated twitching motility, whereas the motility of the N3 mutant was comparable with that of wild-type cells. This indicates that the deletion of the N3 ring leads to increased pilus dynamics, thereby compensating for the reduced number of pili of the N3 mutant. All mutants exhibit a wild-type natural transformation phenotype, leading to the conclusion that DNA uptake is independent of functional T4P.


Asunto(s)
Activación del Canal Iónico , Secretina/metabolismo , Thermus thermophilus/metabolismo , Conformación Proteica , Secretina/química , Relación Estructura-Actividad , Thermus thermophilus/química
4.
Biochim Biophys Acta ; 1857(12): 1935-1942, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27693469

RESUMEN

Mitochondrial complex I is a 1MDa membrane protein complex with a central role in aerobic energy metabolism. The bioenergetic core functions are executed by 14 central subunits that are conserved from bacteria to man. Despite recent progress in structure determination, our understanding of the function of the ~30 accessory subunits associated with the mitochondrial complex is still limited. We have investigated the structure of complex I from the aerobic yeast Yarrowia lipolytica by cryo-electron microscopy. Our density map at 7.9Å resolution closely matches the 3.6-3.9Å X-ray structure of the Yarrowia lipolytica complex. However, the cryo-EM map indicated an additional subunit on the side of the matrix arm above the membrane surface, pointing away from the membrane arm. The density, which is not present in any previously described complex I structure and occurs in about 20 % of the particles, was identified as the accessory sulfur transferase subunit ST1. The Yarrowia lipolytica complex I preparation is active in generating H2S from the cysteine derivative 3-mercaptopyruvate, catalyzed by ST1. We thus provide evidence for a link between respiratory complex I and mitochondrial sulfur metabolism.


Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Proteínas Fúngicas/metabolismo , Mitocondrias/enzimología , Transferasas del Grupo de Azufre/metabolismo , Azufre/metabolismo , Yarrowia/enzimología , Catálisis , Cisteína/análogos & derivados , Cisteína/metabolismo , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestructura , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/ultraestructura , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , Transferasas del Grupo de Azufre/química , Transferasas del Grupo de Azufre/genética , Transferasas del Grupo de Azufre/ultraestructura , Yarrowia/genética , Yarrowia/ultraestructura
5.
Mol Microbiol ; 99(4): 674-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26508112

RESUMEN

The motor of the membrane-anchored archaeal motility structure, the archaellum, contains FlaX, FlaI and FlaH. FlaX forms a 30 nm ring structure that acts as a scaffold protein and was shown to interact with the bifunctional ATPase FlaI and FlaH. However, the structure and function of FlaH has been enigmatic. Here we present structural and functional analyses of isolated FlaH and archaellum motor subcomplexes. The FlaH crystal structure reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATP in vitro, but ATP binding to FlaH is essential for its interaction with FlaI and for archaellum assembly. FlaH interacts with the C-terminus of FlaX, which was earlier shown to be essential for FlaX ring formation and to mediate interaction with FlaI. Electron microscopy reveals that FlaH assembles as a second ring inside the FlaX ring in vitro. Collectively these data reveal central structural mechanisms for FlaH interactions in mediating archaellar assembly: FlaH binding within the FlaX ring and nucleotide-regulated FlaH binding to FlaI form the archaellar basal body core.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Flagelos/fisiología , Nucleótidos/metabolismo , Sulfolobus acidocaldarius/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Arqueales/fisiología , Cristalización , Cristalografía por Rayos X , Flagelina/metabolismo , Genes Arqueales , Microscopía Electrónica , Modelos Moleculares , Movimiento , Sulfolobus acidocaldarius/genética
6.
Dev Cell ; 58(7): 616-632.e6, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36990090

RESUMEN

3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Microscopía , Organoides , Animales , Humanos , Ratones , Técnicas de Cultivo Tridimensional de Células/métodos , Microscopía Electrónica , Organoides/diagnóstico por imagen , Organoides/fisiología , Organoides/ultraestructura , Neoplasias Colorrectales/patología
7.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34160561

RESUMEN

Cells are 3D objects. Therefore, volume EM (vEM) is often crucial for correct interpretation of ultrastructural data. Today, scanning EM (SEM) methods such as focused ion beam (FIB)-SEM are frequently used for vEM analyses. While they allow automated data acquisition, precise targeting of volumes of interest within a large sample remains challenging. Here, we provide a workflow to target FIB-SEM acquisition of fluorescently labeled cells or subcellular structures with micrometer precision. The strategy relies on fluorescence preservation during sample preparation and targeted trimming guided by confocal maps of the fluorescence signal in the resin block. Laser branding is used to create landmarks on the block surface to position the FIB-SEM acquisition. Using this method, we acquired volumes of specific single cells within large tissues such as 3D cultures of mouse mammary gland organoids, tracheal terminal cells in Drosophila melanogaster larvae, and ovarian follicular cells in adult Drosophila, discovering ultrastructural details that could not be appreciated before.


Asunto(s)
Drosophila melanogaster/ultraestructura , Células de la Granulosa/ultraestructura , Glándulas Mamarias Animales/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Coloración y Etiquetado/métodos , Células Tecales/ultraestructura , Tráquea/ultraestructura , Animales , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Femenino , Expresión Génica , Genes Reporteros , Células de la Granulosa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Larva/metabolismo , Larva/ultraestructura , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones , Microscopía Electrónica de Rastreo/instrumentación , Organoides/metabolismo , Organoides/ultraestructura , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Células Tecales/metabolismo , Tráquea/metabolismo , Flujo de Trabajo , Proteína Fluorescente Roja
8.
IUCrJ ; 7(Pt 2): 220-227, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148850

RESUMEN

Single-particle electron cryo-microscopy (cryoEM) has undergone a 'resolution revolution' that makes it possible to characterize megadalton (MDa) complexes at atomic resolution without crystals. To fully exploit the new opportunities in molecular microscopy, new procedures for the cloning, expression and purification of macromolecular complexes need to be explored. Macromolecular assemblies are often unstable, and invasive construct design or inadequate purification conditions and sample-preparation methods can result in disassembly or denaturation. The structure of the 2.6 MDa yeast fatty acid synthase (FAS) has been studied by electron microscopy since the 1960s. Here, a new, streamlined protocol for the rapid production of purified yeast FAS for structure determination by high-resolution cryoEM is reported. Together with a companion protocol for preparing cryoEM specimens on a hydrophilized graphene layer, the new protocol yielded a 3.1 Šresolution map of yeast FAS from 15 000 automatically picked particles within a day. The high map quality enabled a complete atomic model of an intact fungal FAS to be built.

9.
Elife ; 82019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30932812

RESUMEN

Electron cryo-microscopy analyzes the structure of proteins and protein complexes in vitrified solution. Proteins tend to adsorb to the air-water interface in unsupported films of aqueous solution, which can result in partial or complete denaturation. We investigated the structure of yeast fatty acid synthase at the air-water interface by electron cryo-tomography and single-particle image processing. Around 90% of complexes adsorbed to the air-water interface are partly denatured. We show that the unfolded regions face the air-water interface. Denaturation by contact with air may happen at any stage of specimen preparation. Denaturation at the air-water interface is completely avoided when the complex is plunge-frozen on a substrate of hydrophilized graphene.


Asunto(s)
Aire , Ácido Graso Sintasas/química , Desnaturalización Proteica , Proteínas de Saccharomyces cerevisiae/química , Agua/química , Adsorción , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico
10.
Elife ; 62017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28323617

RESUMEN

Many pathogenic bacteria produce pore-forming toxins to attack and kill human cells. We have determined the 4.5 Å structure of the ~2.2 MDa pore complex of pneumolysin, the main virulence factor of Streptococcus pneumoniae, by cryoEM. The pneumolysin pore is a 400 Å ring of 42 membrane-inserted monomers. Domain 3 of the soluble toxin refolds into two ~85 Å ß-hairpins that traverse the lipid bilayer and assemble into a 168-strand ß-barrel. The pore complex is stabilized by salt bridges between ß-hairpins of adjacent subunits and an internal α-barrel. The apolar outer barrel surface with large sidechains is immersed in the lipid bilayer, while the inner barrel surface is highly charged. Comparison of the cryoEM pore complex to the prepore structure obtained by electron cryo-tomography and the x-ray structure of the soluble form reveals the detailed mechanisms by which the toxin monomers insert into the lipid bilayer to perforate the target membrane.


Asunto(s)
Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Estreptolisinas/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Eritrocitos/efectos de los fármacos , Modelos Moleculares , Ovinos , Estreptolisinas/química
11.
Elife ; 62017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29280731

RESUMEN

Secretins form multimeric channels across the outer membrane of Gram-negative bacteria that mediate the import or export of substrates and/or extrusion of type IV pili. The secretin complex of Thermus thermophilus is an oligomer of the 757-residue PilQ protein, essential for DNA uptake and pilus extrusion. Here, we present the cryo-EM structure of this bifunctional complex at a resolution of ~7 Å using a new reconstruction protocol. Thirteen protomers form a large periplasmic domain of six stacked rings and a secretin domain in the outer membrane. A homology model of the PilQ protein was fitted into the cryo-EM map. A crown-like structure outside the outer membrane capping the secretin was found not to be part of PilQ. Mutations in the secretin domain disrupted the crown and abolished DNA uptake, suggesting a central role of the crown in natural transformation.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Fimbrias/química , Procesamiento de Imagen Asistido por Computador , Thermus thermophilus/química , Thermus thermophilus/enzimología , ADN/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Thermus thermophilus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA