Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Immunol ; 202(11): 3282-3296, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31004011

RESUMEN

The adult heart contains macrophages derived from both embryonic and adult bone marrow (BM)-derived precursors. This population diversity prompted us to explore how distinct macrophage subsets localize within the heart, and their relative contributions in cardiac disease. In this study, using the reciprocal expression of Lyve-1 and Ccr2 to distinguish macrophages with distinct origins, we show that, in the steady state, both embryonic (Lyvepos) and BM-derived (Ccr2pos) macrophages populate the major vessels of the heart in mice and humans. However, cardiac macrophage populations are markedly perturbed by inflammation. In a mouse model of Kawasaki disease, BM-derived macrophages preferentially increase during acute cardiac inflammation and selectively accumulate around major cardiac vessels. The accumulation of BM-derived macrophages coincides with the loss of their embryonic counterparts and is an initiating, essential step in the emergence of subsequent cardiac vasculitis in this experimental model. Finally, we demonstrate that the accumulation of Ccr2pos macrophages (and the development of vasculitis) occurs in close proximity to a population of Ccr2 chemokine ligand-producing epicardial cells, suggesting that the epicardium may be involved in localizing inflammation to cardiac vessels. Collectively, our findings identify the perivascular accumulation of BM-derived macrophages as pivotal in the pathogenesis of cardiac vasculitis and provide evidence about the mechanisms governing their recruitment to the heart.


Asunto(s)
Células Madre Embrionarias/citología , Macrófagos/inmunología , Síndrome Mucocutáneo Linfonodular/inmunología , Miocarditis/inmunología , Miocardio/inmunología , Pericardio/inmunología , Vasculitis/inmunología , Animales , Movimiento Celular , Proliferación Celular , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Humanos , Proteínas de Transporte de Membrana/metabolismo , Ratones , Receptores CCR2/metabolismo
2.
Eur J Immunol ; 45(10): 2918-26, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26173988

RESUMEN

Humans encode two inflammatory caspases that detect cytoplasmic LPS, caspase-4 and caspase-5. When activated, these trigger pyroptotic cell death and caspase-1-dependent IL-1ß production; however the mechanism underlying this process is not yet confirmed. We now show that a specific NLRP3 inhibitor, MCC950, prevents caspase-4/5-dependent IL-1ß production elicited by transfected LPS. Given that both caspase-4 and caspase-5 can detect cytoplasmic LPS, it is possible that these proteins exhibit some degree of redundancy. Therefore, we generated human monocytic cell lines in which caspase-4 and caspase-5 were genetically deleted either individually or together. We found that the deletion of caspase-4 suppressed cell death and IL-1ß production following transfection of LPS into the cytoplasm, or in response to infection with Salmonella typhimurium. Although deletion of caspase-5 did not confer protection against transfected LPS, cell death and IL-1ß production were reduced after infection with Salmonella. Furthermore, double deletion of caspase-4 and caspase-5 had a synergistic effect in the context of Salmonella infection. Our results identify the NLRP3 inflammasome as the specific platform for IL-1ß maturation, downstream of cytoplasmic LPS detection by caspase-4/5. We also show that both caspase-4 and caspase-5 are functionally important for appropriate responses to intracellular Gram-negative bacteria.


Asunto(s)
Proteínas Portadoras/inmunología , Caspasas Iniciadoras/inmunología , Caspasas/inmunología , Lipopolisacáridos/inmunología , Monocitos/inmunología , Infecciones por Salmonella/inmunología , Salmonella typhimurium/inmunología , Línea Celular Tumoral , Humanos , Interleucina-1beta/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR
3.
Arthritis Rheumatol ; 75(2): 305-317, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36057112

RESUMEN

OBJECTIVE: Remodeling of the coronary arteries is a common feature in severe cases of Kawasaki disease (KD). This pathology is driven by the dysregulated proliferation of vascular fibroblasts, which can lead to coronary artery aneurysms, stenosis, and myocardial ischemia. We undertook this study to investigate whether inhibiting fibroblast proliferation might be an effective therapeutic strategy to prevent coronary artery remodeling in KD. METHOD: We used a murine model of KD (induced by the injection of the Candida albicans water-soluble complex [CAWS]) and analyzed patient samples to evaluate potential antifibrotic therapies for KD. RESULTS: We identified the mechanistic target of rapamycin (mTOR) pathway as a potential therapeutic target in KD. The mTOR inhibitor rapamycin potently inhibited cardiac fibroblast proliferation in vitro, and vascular fibroblasts up-regulated mTOR kinase signaling in vivo in the CAWS mouse model of KD. We evaluated the in vivo efficacy of mTOR inhibition and found that the therapeutic administration of rapamycin reduced vascular fibrosis and intimal hyperplasia of the coronary arteries in CAWS-injected mice. Furthermore, the analysis of cardiac tissue from KD fatalities revealed that vascular fibroblasts localizing with inflamed coronary arteries up-regulate mTOR signaling, confirming that the mTOR pathway is active in human KD. CONCLUSION: Our findings demonstrate that mTOR signaling contributes to coronary artery remodeling in KD, and that targeting this pathway offers a potential therapeutic strategy to prevent or restrict this pathology in high-risk KD patients.


Asunto(s)
Enfermedad de la Arteria Coronaria , Síndrome Mucocutáneo Linfonodular , Humanos , Animales , Ratones , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , Vasos Coronarios/patología , Sirolimus/farmacología , Modelos Animales de Enfermedad , Serina-Treonina Quinasas TOR
4.
Clin Transl Med ; 13(1): e1150, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653319

RESUMEN

BACKGROUND: Low-density neutrophils (LDN) are a distinct subset of neutrophils rarely detected in healthy people but appear in the blood of patients with autoimmune diseases, including systemic lupus erythematosus (SLE), and are mobilised in response to granulocyte colony-stimulating factor (G-CSF). The aim of this study was to identify novel mechanisms responsible for the pathogenic capacity of LDN in SLE. METHODS: Neutrophils were isolated from donors treated with G-CSF, and whole-cell proteomic analysis was performed on LDN and normal-density neutrophils. RESULTS: CD98 is significantly upregulated in LDN from G-CSF donors and defines a subset of LDN within the blood of SLE patients. CD98 is a transmembrane protein that dimerises with L-type amino acid transporters. We show that CD98 is responsible for the increased bioenergetic capacity of LDN. CD98 on LDN mediates the uptake of essential amino acids that are used by mitochondria to produce adenosine triphosphate, especially in the absence of glucose. Inhibition of CD98 reduces the metabolic flexibility of this population, which may limit their pathogenic capacity. CD98+ LDN produce more proinflammatory cytokines and chemokines than their normal density counterparts and are resistant to apoptosis, which may also contribute to tissue inflammation and end organ damage in SLE. CONCLUSIONS: CD98 provides a phenotypic marker for LDN that facilitates identification of this population without density-gradient separation and represents a novel therapeutic target to limit its pathogenic capacity.


Asunto(s)
Proteína-1 Reguladora de Fusión , Lupus Eritematoso Sistémico , Neutrófilos , Humanos , Citocinas/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Neutrófilos/metabolismo , Proteómica , Proteína-1 Reguladora de Fusión/metabolismo
5.
Cell Death Differ ; 29(1): 96-104, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34304242

RESUMEN

Inflammation is a natural defence mechanism of the body to protect against pathogens. It is induced by immune cells, such as macrophages and neutrophils, which are rapidly recruited to the site of infection, mediating host defence. The processes for eliminating inflammatory cells after pathogen clearance are critical in preventing sustained inflammation, which can instigate diverse pathologies. During chronic inflammation, the excessive and uncontrollable activity of the immune system can cause extensive tissue damage. New therapies aimed at preventing this over-activity of the immune system could have major clinical benefits. Here, we investigated the role of the pro-survival Bcl-2 family member A1 in the survival of inflammatory cells under normal and inflammatory conditions using murine models of lung and peritoneal inflammation. Despite the robust upregulation of A1 protein levels in wild-type cells upon induction of inflammation, the survival of inflammatory cells was not impacted in A1-deficient mice compared to wild-type controls. These findings indicate that A1 does not play a major role in immune cell homoeostasis during inflammation and therefore does not constitute an attractive therapeutic target for such morbidities.


Asunto(s)
Peritonitis , Neumonía , Animales , Apoptosis/fisiología , Supervivencia Celular , Inflamación/patología , Ratones
6.
Cell Rep ; 31(1): 107492, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268090

RESUMEN

Stimulator of Interferon Genes (STING) is a critical component of host innate immune defense but can contribute to chronic autoimmune or autoinflammatory disease. Once activated, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS)-STING pathway induces both type I interferon (IFN) expression and nuclear factor-κB (NF-κB)-mediated cytokine production. Currently, these two signaling arms are thought to be mediated by a single upstream kinase, TANK-binding kinase 1 (TBK1). Here, using genetic and pharmacological approaches, we show that TBK1 alone is dispensable for STING-induced NF-κB responses in human and mouse immune cells, as well as in vivo. We further demonstrate that TBK1 acts redundantly with IκB kinase ε (IKKε) to drive NF-κB upon STING activation. Interestingly, we show that activation of IFN regulatory factor 3 (IRF3) is highly dependent on TBK1 kinase activity, whereas NF-κB is significantly less sensitive to TBK1/IKKε kinase inhibition. Our work redefines signaling events downstream of cGAS-STING. Our findings further suggest that cGAS-STING will need to be targeted directly to effectively ameliorate the inflammation underpinning disorders associated with STING hyperactivity.


Asunto(s)
Quinasa I-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Quinasa I-kappa B/fisiología , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , FN-kappa B/metabolismo , Nucleótidos Cíclicos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/inmunología
7.
Arthritis Rheumatol ; 71(1): 50-62, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30009417

RESUMEN

OBJECTIVE: The production of class-switched high-affinity autoantibodies derived from organized germinal centers (GCs) is a hallmark of many autoimmune inflammatory diseases, including rheumatoid arthritis (RA). TANK-binding kinase 1 (TBK-1) is a serine/threonine kinase involved in the maturation of GC follicular helper T (Tfh) cells downstream of inducible costimulator signaling. We undertook this study to assess the therapeutic potential of TBK-1 inhibition using the small-molecule inhibitor WEHI-112 in antibody-dependent models of inflammatory arthritis. METHODS: Using the models of collagen-induced arthritis (CIA), antigen-induced arthritis (AIA), and K/BxN serum-transfer-induced arthritis (STIA), we determined the effectiveness of WEHI-112 at inhibiting clinical and histologic features of arthritis in C57BL/6 and DBA/1 mice. We used immunohistochemistry to characterize GC populations during CIA development, and we used enzyme-linked immunosorbent assays to determine levels of Ig autoantibodies in WEHI-112-treated mice compared to vehicle-treated mice. RESULTS: WEHI-112, a tool compound that is semiselective for TBK-1 but that also has activity against IKKε and JAK2, abolished TBK-1-dependent activation of interferon (IFN) regulatory factor 3 and inhibited type I IFN responses in vitro. In vivo, treatment with WEHI-112 selectively abrogated clinical and histologic features of established, antibody-dependent CIA, but had minimal effects on an antibody-independent model of AIA or on K/BxN STIA. In keeping with these findings, WEHI-112 reduced arthritogenic type II collagen-specific IgG1 and IgG2b antibody production. Furthermore, WEHI-112 altered the GC Tfh cell phenotype and GC B cell function in CIA. CONCLUSION: We report that TBK-1 inhibition using WEHI-112 abrogated antibody-dependent CIA. As WEHI-112 failed to inhibit non-antibody-driven joint inflammation, we conclude that the major effect of this compound was most likely the targeting of TBK-1-mediated mechanisms in the GC reaction. This approach may have therapeutic potential in RA and in other GC-associated autoantibody-driven inflammatory diseases.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Autoanticuerpos/efectos de los fármacos , Centro Germinal/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Animales , Autoanticuerpos/inmunología , Azetidinas/farmacología , Colágeno Tipo II , Ciclobutanos/farmacología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Adyuvante de Freund , Centro Germinal/inmunología , Inmunohistoquímica , Factores Inmunológicos , Técnicas In Vitro , Factor 3 Regulador del Interferón/efectos de los fármacos , Factor 3 Regulador del Interferón/inmunología , Interferón Tipo I/efectos de los fármacos , Interferón Tipo I/inmunología , Inhibidores de las Cinasas Janus/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Morfolinas/farmacología , Purinas , Pirazoles , Albúmina Sérica Bovina , Sulfonamidas/farmacología , Linfocitos T Colaboradores-Inductores/inmunología
8.
Cell Rep ; 20(3): 668-682, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28723569

RESUMEN

X-linked Inhibitor of Apoptosis (XIAP) deficiency predisposes people to pathogen-associated hyperinflammation. Upon XIAP loss, Toll-like receptor (TLR) ligation triggers RIPK3-caspase-8-mediated IL-1ß activation and death in myeloid cells. How XIAP suppresses these events remains unclear. Here, we show that TLR-MyD88 causes the proteasomal degradation of the related IAP, cIAP1, and its adaptor, TRAF2, by inducing TNF and TNF Receptor 2 (TNFR2) signaling. Genetically, we define that myeloid-specific cIAP1 loss promotes TLR-induced RIPK3-caspase-8 and IL-1ß activity in the absence of XIAP. Importantly, deletion of TNFR2 in XIAP-deficient cells limited TLR-MyD88-induced cIAP1-TRAF2 degradation, cell death, and IL-1ß activation. In contrast to TLR-MyD88, TLR-TRIF-induced interferon (IFN)ß inhibited cIAP1 loss and consequent cell death. These data reveal how, upon XIAP deficiency, a TLR-TNF-TNFR2 axis drives cIAP1-TRAF2 degradation to allow TLR or TNFR1 activation of RIPK3-caspase-8 and IL-1ß. This mechanism may explain why XIAP-deficient patients can exhibit symptoms reminiscent of patients with activating inflammasome mutations.


Asunto(s)
Caspasa 8/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Interleucina-1beta/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Animales , Caspasa 8/genética , Muerte Celular , Proteínas Inhibidoras de la Apoptosis/deficiencia , Proteínas Inhibidoras de la Apoptosis/genética , Interleucina-1beta/genética , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Proteolisis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Factor 2 Asociado a Receptor de TNF/genética , Receptores Toll-Like/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA