Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Eur Respir J ; 61(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36104291

RESUMEN

BACKGROUND: Infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause a severe disease, termed coronavirus disease 2019 (COVID-19), with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms and their modulation has shown a mortality benefit. METHODS: In a cohort of 56 critically ill COVID-19 patients, peripheral blood transcriptomes were obtained at admission to an intensive care unit (ICU) and clustered using an unsupervised algorithm. Differences in gene expression, circulating microRNAs (c-miRNAs) and clinical data between clusters were assessed, and circulating cell populations estimated from sequencing data. A transcriptomic signature was defined and applied to an external cohort to validate the findings. RESULTS: We identified two transcriptomic clusters characterised by expression of either interferon-related or immune checkpoint genes, respectively. Steroids have cluster-specific effects, decreasing lymphocyte activation in the former but promoting B-cell activation in the latter. These profiles have different ICU outcomes, despite no major clinical differences at ICU admission. A transcriptomic signature was used to identify these clusters in two external validation cohorts (with 50 and 60 patients), yielding similar results. CONCLUSIONS: These results reveal different underlying pathogenetic mechanisms and illustrate the potential of transcriptomics to identify patient endotypes in severe COVID-19 with the aim to ultimately personalise their therapies.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Transcriptoma , Enfermedad Crítica , Unidades de Cuidados Intensivos
2.
Pharmacol Res ; 187: 106612, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528246

RESUMEN

The Mediterranean diet (MD) is one of the healthiest ones and is associated with a lower incidence of cardiovascular and cerebrovascular diseases as well as cancer. Extra virgin olive oil (EVOO) is probably the most idiosyncratic component of this diet. EVOO has been attributed with many healthful effects, which may be due to its phenolic components, e.g. including hydroxytyrosol (HT). Recent studies suggest that EVOO and HT have molecular targets in human tissues and modulate epigenetic mechanisms. DNA methylation is one of the most studied epigenetic mechanisms and consists of the addition of a methyl group to the cytosines of the DNA chain. Given the purported health effects of EVOO (poly)phenols, we analyzed the changes induced by HT in DNA methylation, in a colorectal cancer cell line. Caco-2 cells were treated with HT for one week or with the demethylating agent 5'-azacytidine for 48 h. Global DNA methylation was assessed by ELISA. DNA bisulfitation was performed and Infinium Methylation EPIC BeadChips were used to analyze the specific methylation of CpG sites. We show an increase in global DNA methylation in Caco-2 cells after HT treatment, with a total of 32,141 differentially methylated (CpGs DMCpGs). Interestingly, our analyses revealed the endothelin receptor type A gene (EDNRA) as a possible molecular target of HT. In summary, we demonstrate that cellular supplementation with HT results in a specific methylome map and propose a potential gene target for HT.


Asunto(s)
Neoplasias Colorrectales , Dieta Mediterránea , Humanos , Células CACO-2 , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Epigénesis Genética , Aceite de Oliva/farmacología , Fenoles/farmacología
3.
Pharmacol Res ; 198: 106999, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37984504

RESUMEN

Cell-to-cell communication strategies include extracellular vesicles (EVs) in plants and animals. The bioactive molecules in a diet rich in vegetables and fruits are associated with disease-preventive effects. Plant-derived EVs (PDEVs) are biogenetically and morphologically comparable to mammalian EVs and transport bioactive molecules, including miRNAs. However, the biological functions of PDEVs are not fully understood, and standard isolation protocols are lacking. Here, PDEVs were isolated from four foods with a combination of ultracentrifugation and size exclusion chromatography, and evaluated as vehicles for enhanced transport of synthetic miRNAs. In addition, the role of food-derived EVs as carriers of dietary (poly)phenols and other secondary metabolites was investigated. EVs from broccoli, pomegranate, apple, and orange were efficiently isolated and characterized. In all four sources, 4 miRNA families were present in tissues and EVs. miRNAs present in broccoli and fruit-derived EVs showed a reduced RNase degradation and were ferried inside exposed cells. EVs transfected with a combination of ath-miR159a, ath-miR162a-3p, ath-miR166b-3p, and ath-miR396b-5p showed toxic effects on human cells, as did natural broccoli EVs alone. PDEVs transport trace amounts of phytochemicals, including flavonoids, anthocyanidins, phenolic acids, or glucosinolates. Thus, PDEVs can act as nanocarriers for functional miRNAs that could be used in RNA-based therapy.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Células Cultivadas , Frutas , Mamíferos/genética , Mamíferos/metabolismo
4.
Semin Cancer Biol ; 73: 19-29, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33086083

RESUMEN

Cancer is one of the leading causes of premature death and constitutes a challenge for both low- and high-income societies. Previous evidence supports a close association between modifiable risk factors, including dietary habits, and cancer risk. Investigation of molecular mechanisms that mediate the pro-oncogenic and anti-oncogenic effects of diet is therefore fundamental. MicroRNAs (miRNAs) have received much attention in the past few decades as crucial molecular elements of human physiology and disease. Aberrant expression patterns of these small noncoding transcripts have been observed in a wide array of cancers. Interestingly, human miRNAs not only can be modulated by bioactive dietary components, but it has also been proposed that diet-derived miRNAs may contribute to the pool of human miRNAs. Results from independent groups have suggested that these exogenous miRNAs may be functional in organisms. These findings open the door to novel and innovative approaches to cancer therapy. Here, we provide an overview of the biology of miRNAs, with a special focus on plant-derived dietary miRNAs, summarize recent findings in the field of cancer, address the possible applications to clinical practice and discuss obstacles and challenges in the field.


Asunto(s)
Dieta , MicroARNs , Neoplasias , Plantas , Animales , Humanos
5.
Pharmacol Res ; 185: 106472, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36182038

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression. The wide-ranging biological activities of microRNAs stimulated research on disease mechanisms and is suggesting appealing therapeutic applications. When unprotected, miRNAs suffer from rapid degradation and appropriate strategies need to be developed to improve their therapeutic potential. Since the first observation of miRNAs being naturally transported by extracellular vesicles (EVs), the latter have been proposed as specific transport means for drug delivery, conferring stability and increasing resistance against RNase degradation. However, a standard, reproducible, and cost-effective protocol for EV isolation is lacking. Here, the use of broccoli-derived EVs as a therapeutic vehicle for extracellular RNA drug delivery was assessed. EVs were isolated from broccoli, combining ultracentrifugation and size exclusion chromatography methodology. Caco-2 cells were exposed to isolated EVs loaded with exogenous miRNAs and cellular viability was tested. The miRNAs were taken up by this intestinal cell line. Our results show that broccoli EVs can be efficiently isolated, characterized, and loaded with exogenous miRNAs, leading to toxicity in caco-2 cells. Because the pharmaceutical industry is searching for novel drug delivery nanovesicles with intrinsic properties such as low immunogenicity, stability to the gastrointestinal tract, ability to overcome biological barriers, large-scale production, cost-effectiveness, etc., broccoli-isolated nanovesicles might be suitable candidates for future pharmacological applications. We propose broccoli as a natural source of EVs, which are capable of transporting exogenous miRNAs with potential therapeutic effects and suggest that appropriate toxicological and randomized controlled trials as well as patent applications are warranted.


Asunto(s)
Brassica , Vesículas Extracelulares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Brassica/genética , Brassica/metabolismo , Células CACO-2 , Vesículas Extracelulares/metabolismo , Sistemas de Liberación de Medicamentos/métodos
6.
Eur J Nutr ; 61(2): 1043-1056, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34716465

RESUMEN

PURPOSE: Extracellular RNAs are unstable and rapidly degraded unless protected. Bovine-milk extracellular vesicles (EVs) confer protection to dietary miRNAs, although it remains unclear whether this importantly improves their chances of reaching host target cells to exert biological effects. METHODS: Caco-2, HT-29, Hep-G2 and FHs-74 cell lines were exposed to natural/labelled milk EVs to evaluate cellular uptake. Five frequently reported human milk miRNAs (miR-146b-5p, miR-148a-3p, miR-30a-5p, miR-26a-5p, and miR-22-3p) were loaded into EVs. The intracellular concentration of each miRNA in cells was determined. In addition, an animal study giving an oral dose of loaded EVs in C57BL6/ mice were performed. Gene expression regulation was assessed by microarray analysis. RESULTS: Digestive stability analysis showed high overall degradation of exogenous miRNAs, although EV-protected miRNAs better resisted gastrointestinal digestion compared to free miRNAs (tenfold higher levels). Importantly, orally delivered EV-loaded miRNAs reached host organs, including brain, in mice. However, no biological effect has been identified. CONCLUSION: Milk EVs protect miRNAs from degradation and facilitate cellular uptake. miRNA concentration in EVs from bovine milk might be insufficient to produce gene modulation. Nevertheless, sizable amounts of exogenous miRNAs may be loaded into EVs, and orally delivered EV-loaded miRNAs can reach tissues in vivo, increasing the possibility of exerting biological effects. Further investigation is justified as this could have an impact in the field of nutrition and health (i.e., infant formulas elaboration).


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Células CACO-2 , Digestión , Vesículas Extracelulares/metabolismo , Expresión Génica , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Leche Humana/metabolismo
7.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563314

RESUMEN

Although genomes from many edible mushrooms are sequenced, studies on fungal micro RNAs (miRNAs) are scarce. Most of the bioinformatic tools are designed for plants or animals, but the processing and expression of fungal miRNAs share similarities and differences with both kingdoms. Moreover, since mushroom species such as Agaricus bisporus (A. bisporus, white button mushroom) are frequently consumed as food, controversial discussions are still evaluating whether their miRNAs might or might not be assimilated, perhaps within extracellular vesicles (i.e., exosomes). Therefore, the A. bisporus RNA-seq was studied in order to identify potential de novo miRNA-like small RNAs (milRNAs) that might allow their later detection in diet. Results pointed to 1 already known and 37 de novo milRNAs. Three milRNAs were selected for RT-qPCR experiments. Precursors and mature milRNAs were found in the edible parts (caps and stipes), validating the predictions carried out in silico. When their potential gene targets were investigated, results pointed that most were involved in primary and secondary metabolic regulation. However, when the human transcriptome is used as the target, the results suggest that they might interfere with important biological processes related with cancer, infection and neurodegenerative diseases.


Asunto(s)
Agaricus , MicroARNs , Agaricus/genética , Biología Computacional/métodos , MicroARNs/genética , ARN de Hongos , RNA-Seq
8.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292963

RESUMEN

Atherosclerosis is a hallmark of cardiovascular disease, and lifestyle strongly impacts its onset and progression. Nutrients have been shown to regulate the miR-17/92 cluster, with a role in endothelial function and atherosclerosis. Choline, betaine, and L-carnitine, found in animal foods, are metabolized into trimethylamine (TMA) by the gut microbiota. TMA is then oxidized to TMAO, which has been associated with atherosclerosis. Our aim was to investigate whether TMAO modulates the expression of the miR-17/92 cluster, along with the impact of this modulation on the expression of target genes related to atherosclerosis and inflammation. We treated HepG-2 cells, THP-1 cells, murine liver organoids, and human peripheral mononuclear cells with 6 µM of TMAO at different timepoints. TMAO increased the expression of all analyzed members of the cluster, except for miR-20a-5p in murine liver organoids and primary human macrophages. Genes and protein levels of SERPINE1 and IL-12A increased. Both have been associated with atherosclerosis and cardiovascular disease (CDVD) and are indirectly modulated by the miR-17-92 cluster. We concluded that TMAO modulates the expression of the miR-17/92 cluster and that such modulation could promote inflammation through IL-12A and blood clotting through SERPINE1 expression, which could ultimately promote atherosclerosis and CVD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , MicroARNs , Humanos , Ratones , Animales , Betaína/metabolismo , Metilaminas/metabolismo , Aterosclerosis/metabolismo , Colina/metabolismo , Carnitina/metabolismo , MicroARNs/genética , Inflamación/genética
9.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35270004

RESUMEN

Dietary (poly)phenols are extensively metabolized, limiting their anticancer activity. Exosomes (EXOs) are extracellular vesicles that could protect polyphenols from metabolism. Our objective was to compare the delivery to breast tissue and anticancer activity in breast cancer cell lines of free curcumin (CUR) and resveratrol (RSV) vs. their encapsulation in milk-derived EXOs (EXO-CUR and EXO-RSV). A kinetic breast tissue disposition was performed in rats. CUR and RSV were analyzed using UPLC-QTOF-MS and GC-MS, respectively. Antiproliferative activity was tested in MCF-7 and MDA-MB-231 breast cancer and MCF-10A non-tumorigenic cells. Cell cycle distribution, apoptosis, caspases activation, and endocytosis pathways were determined. CUR and RSV peaked in the mammary tissue (41 ± 15 and 300 ± 80 nM, respectively) 6 min after intravenous administration of EXO-CUR and EXO-RSV, but not with equivalent free polyphenol concentrations. Nanomolar EXO-CUR or EXO-RSV concentrations, but not free CUR or RSV, exerted a potent antiproliferative effect on cancer cells with no effect on normal cells. Significant (p < 0.05) cell cycle alteration and pro-apoptotic activity (via the mitochondrial pathway) were observed. EXO-CUR and EXO-RSV entered the cells primarily via clathrin-mediated endocytosis, avoiding ATP-binding cassette transporters (ABC). Milk EXOs protected CUR and RSV from metabolism and delivered both polyphenols to the mammary tissue at concentrations compatible with the fast and potent anticancer effects exerted in model cells. Milk EXOs enhanced the bioavailability and anticancer activity of CUR and RSV by acting as Trojan horses that escape from cancer cells' ABC-mediated chemoresistance.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Curcumina , Exosomas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Curcumina/farmacología , Curcumina/uso terapéutico , Femenino , Humanos , Leche , Polifenoles/farmacología , Ratas , Resveratrol/farmacología , Resveratrol/uso terapéutico
10.
Rev Med Chil ; 150(4): 483-492, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36155758

RESUMEN

BACKGROUND: Confinement is an effective measure to control COVID-19, but it can have repercussions on lifestyle-related behaviors, especially among adolescents. Poor quality diet and low physical activity could trigger weight gain and the appearance of chronic non-communicable diseases at an early age. AIM: To investigate the changes in eating and physical activity patterns before and during the first COVID-19 confinement in Chilean adolescents. MATERIAL AND METHODS: Chilean adolescents aged between 10 and 19 years were invited to answer an online survey with 47 questions about dietary habits and physical activity. RESULTS: The survey was answered by 420 participants and only four adolescents declined to answer it. Changes in eating patterns were evidenced, such as an increase in lunch consumption from 54.1 to 83%, and a decrease in the consumption of both healthy and unhealthy foods. Also, significant changes were observed in physical activity patterns, and an increase in the time spent sitting, from 4.7 to 5.8 hours during confinement. CONCLUSIONS: The first confinement for COVID-19 modified eating and physical activity patterns in Chilean adolescents towards unhealthy habits, which if maintained, could negatively affect their health and quality of life.


Asunto(s)
COVID-19 , Adolescente , Adulto , COVID-19/epidemiología , Niño , Ejercicio Físico , Conducta Alimentaria , Humanos , Estilo de Vida , Calidad de Vida , Adulto Joven
11.
RNA Biol ; 18(sup2): 586-599, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34843412

RESUMEN

The field of epitranscriptomics is rapidly developing. Several modifications (e.g. methylations) have been identified for different RNA types. Current evidence shows that chemical RNA modifications can influence the whole molecule's secondary structure, translatability, functionality, stability, and degradation, and some are dynamically and reversibly modulated. miRNAs, in particular, are not only post-transcriptional modulators of gene expression but are themselves submitted to regulatory mechanisms. Understanding how these modifications are regulated and the resulting pathological consequences when dysregulation occurs is essential for the development of new therapeutic targets. In humans and other mammals, dietary components have been shown to affect miRNA expression and may also induce chemical modifications in miRNAs. The identification of chemical modifications in miRNAs (endogenous and exogenous) that can impact host gene expression opens up an alternative way to select new specific therapeutic targets.Hence, the aim of this review is to briefly address how RNA epitranscriptomic modifications can affect miRNA biogenesis and to summarize the existing evidence showing the connection between the (de)regulation of these processes and disease settings. In addition, we hypothesize on the potential effect certain chemical modifications could have on the potential cross-kingdom journey of dietary plant miRNAs.


Asunto(s)
Susceptibilidad a Enfermedades , Epigénesis Genética , MicroARNs/genética , Procesamiento Postranscripcional del ARN , Regiones no Traducidas 3' , Adenosina/análogos & derivados , Animales , Emparejamiento Base , Sitios de Unión , Regulación de la Expresión Génica de las Plantas , Humanos , Metilación , Interferencia de ARN , Transcriptoma
12.
Eur J Nutr ; 60(8): 4279-4293, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34027583

RESUMEN

PURPOSE: Exosomes are extracellular vesicles secreted by cells, which can transport different molecules, including nucleic acids. Dietary habits may induce gene regulation through the modulation of exosomal RNAs. We aimed at characterizing exosomal lncRNAs, mRNA and miRNAs modulation after a 1-year adherence to a low-fat diet (LFD) or to Mediterranean-based diets enriched in extra-virgin olive oil (MedDiet + EVOO) or in a mixture of nuts (MedDiet + Nuts). METHODS: Plasma samples were collected, at baseline and after 1 year of dietary interventions, from 150 participants included in the PREDIMED study (Reus Center). LncRNAs, mRNAs and miRNAs were isolated from plasma exosomes and screened. RT-qPCR validation was performed for miRNAs. RESULTS: Compared with LFD, 413 lncRNAs and 188 mRNAs, and 476 lncRNAs and 235 mRNAs were differentially modulated in response to the MedDiet + EVOO and MedDiet + Nuts interventions, respectively. In addition, after 1 year of dietary interventions, 26 circulating miRNAs were identified as differentially expressed between groups. After 1 year of intervention, 11 miRNAs significantly changed in LFD group, while 8 and 21 were modulated in response to the MedDiet enriched with EVOO or nuts, respectively. Bioinformatic analyses of differentially expressed miRNAs and their validated target genes suggest certain metabolic pathways are modulated by LFD (PI3K-Akt and AMPK), MedDiet + EVOO (PI3K-Akt, NF-kappa B, HIF-1, and insulin resistance), and MedDiet-Nuts (FoxO, PI3K-Akt, AMPK, p53 and HIF-1) interventions. CONCLUSION: Results show that 1-year MedDiet + Nuts and MedDiet + EVOO dietary interventions modulate exosomal RNA content, with the former affecting a higher number of miRNAs. The modulation of exosomal RNAs could help explain how the adherence to a Mediterranean diet may lead to beneficial effects and deserves further investigation.


Asunto(s)
Dieta Mediterránea , MicroARNs , Dieta con Restricción de Grasas , Humanos , MicroARNs/genética , Nueces , Aceite de Oliva , Fosfatidilinositol 3-Quinasas
13.
Eur J Nutr ; 60(4): 1999-2011, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32979076

RESUMEN

PURPOSE: Epidemiological studies and clinical trials support the association of nut consumption with a lower risk of prevalent non-communicable diseases, particularly cardiovascular disease. However, the molecular mechanisms underlying nut benefits remain to be fully described. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and play a pivotal role in health and disease. Exosomes are extracellular vesicles released from cells and mediate intercellular communication. Whether nut consumption modulates circulating miRNAs (c-miRNAs) transported in exosomes is poorly described. METHODS: Cognitively healthy elderly subjects were randomized to either control (n = 110, abstaining from walnuts) or daily supplementation with walnuts (15% of their total energy, ≈30-60 g/day, n = 101) for 1-year. C-miRNAs were screened in exosomes isolated from 10 samples, before and after supplementation, and identified c-miRNA candidates were validated in the whole cohort. In addition, nanoparticle tracking analysis and lipidomics were assessed in pooled exosomes from the whole cohort. RESULTS: Exosomal hsa-miR-32-5p and hsa-miR-29b-3p were consistently induced by walnut consumption. No major changes in exosomal lipids, nanoparticle concentration or size were found. CONCLUSION: Our results provide novel evidence that certain c-miRNAs transported in exosomes are modulated by walnut consumption. The extent to which this finding contributes to the benefits of walnuts deserves further research.


Asunto(s)
Exosomas , Juglans , MicroARNs , Suplementos Dietéticos , Nueces
14.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681805

RESUMEN

Diet is a well-known risk factor of cardiovascular diseases (CVDs). Some microRNAs (miRNAs) have been described to regulate molecular pathways related to CVDs. Diet can modulate miRNAs and their target genes. Choline, betaine, and l-carnitine, nutrients found in animal products, are metabolized into trimethylamine n-oxide (TMAO), which has been associated with CVD risk. The aim of this study was to investigate TMAO regulation of CVD-related miRNAs and their target genes in cellular models of liver and macrophages. We treated HEPG-2, THP-1, mouse liver organoids, and primary human macrophages with 6 µM TMAO at different timepoints (4, 8, and 24 h for HEPG-2 and mouse liver organoids, 12 and 24 h for THP-1, and 12 h for primary human macrophages) and analyzed the expression of a selected panel of CVD-related miRNAs and their target genes and proteins by real-time PCR and Western blot, respectively. HEPG-2 cells were transfected with anti-miR-30c and syn-miR-30c. TMAO increased the expression of miR-21-5p and miR-30c-5p. PER2, a target gene of both, decreased its expression with TMAO in HEPG-2 and mice liver organoids but increased its mRNA expression with syn-miR-30c. We concluded that TMAO modulates the expression of miRNAs related to CVDs, and that such modulation affects their target genes.


Asunto(s)
Enfermedades Cardiovasculares/genética , Metilaminas/farmacología , MicroARNs/efectos de los fármacos , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/fisiología , Proteínas Circadianas Period/efectos de los fármacos , Proteínas Circadianas Period/genética , Células THP-1
15.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499350

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs with a known role as mediators of gene expression in crucial biological processes, which converts them into high potential contenders in the ongoing search for effective therapeutic strategies. However, extracellular RNAs are unstable and rapidly degraded, reducing the possibility of successfully exerting a biological function in distant target cells. Strategies aimed at enhancing the therapeutic potential of miRNAs include the development of efficient, tissue-specific and nonimmunogenic delivery methods. Since miRNAs were discovered to be naturally transported within exosomes, a type of extracellular vesicle that confers protection against RNase degradation and increases miRNA stability have been proposed as ideal delivery vehicles for miRNA-based therapy. Although research in this field has grown rapidly in the last few years, a standard, reproducible and cost-effective protocol for exosome isolation and extracellular RNA delivery is lacking. We aimed to evaluate the use of milk-derived extracellular vesicles as vehicles for extracellular RNA drug delivery. With this purpose, exosomes were isolated from raw bovine milk, combining ultracentrifugation and size exclusion chromatography (SEC) methodology. Isolated exosomes were then loaded with exogenous hsa-miR148a-3p, a highly expressed miRNA in milk exosomes. The suitability of exosomes as delivery vehicles for extracellular RNAs was tested by evaluating the absorption of miR-148a-3p in hepatic (HepG2) and intestinal (Caco-2) cell lines. The potential exertion of a biological effect by miR-148a-3p was assessed by gene expression analysis, using microarrays. Results support that bovine milk is a cost-effective source of exosomes which can be used as nanocarriers of functional miRNAs with a potential use in RNA-based therapy. In addition, we show here that a combination of ultracentrifugation and SEC technics improve exosome enrichment, purity, and integrity for subsequent use.


Asunto(s)
Sistemas de Liberación de Medicamentos , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Leche/química , Nanopartículas/química , Animales , Células CACO-2 , Bovinos , Análisis por Conglomerados , Células Hep G2 , Humanos , MicroARNs/química , Análisis de Secuencia por Matrices de Oligonucleótidos
16.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918680

RESUMEN

Overfishing of sea cucumber Isostichopus badionotus from Yucatan has led to a major population decline. They are being captured as an alternative to traditional species despite a paucity of information about their health-promoting properties. The transcriptome of the body wall of wild and farmed I. badionotus has now been studied for the first time by an RNA-Seq approach. The functional profile of wild I. badionotus was comparable with data in the literature for other regularly captured species. In contrast, the metabolism of first generation farmed I. badionotus was impaired. This had multiple possible causes including a sub-optimal growth environment and impaired nutrient utilization. Several key metabolic pathways that are important in effective handling and accretion of nutrients and energy, or clearance of harmful cellular metabolites, were disrupted or dysregulated. For instance, collagen mRNAs were greatly reduced and deposition of collagen proteins impaired. Wild I. badionotus is, therefore, a suitable alternative to other widely used species but, at present, the potential of farmed I. badionotus is unclear. The environmental or nutritional factors responsible for their impaired function in culture remain unknown, but the present data gives useful pointers to the underlying problems associated with their aquaculture.


Asunto(s)
Animales Domésticos/genética , Animales Salvajes/genética , Perfilación de la Expresión Génica , Pepinos de Mar/genética , Transcriptoma , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Reproducibilidad de los Resultados
17.
J Strength Cond Res ; 35(2): 287-291, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33337695

RESUMEN

ABSTRACT: Fernández-Sanjurjo, M, Díaz-Martínez, ÁE, Díez-Robles, S, González-González, F, de Gonzalo-Calvo, D, Rabadán, M, Dávalos, A, Fernández-García, B, and Iglesias-Gutiérrez, E. Circulating microRNA profiling reveals specific subsignatures in response to a maximal incremental exercise test. J Strength Cond Res 35(2): 287-291, 2021-Circulating microRNAs (c-miRNAs) have been described as emergent regulators and biomarkers of exercise. The aim of this study was to analyze the c-miRNA response to a maximal incremental exercise test (MIET) and its relationship with markers of exercise response and adaptation. Two blood samples were collected from 9 male amateur runners (31-50 years), before (Pre) and after (Post) a MIET. The maximal oxygen uptake (V̇o2max), maximum heart rate (HRmax), and maximal aerobic speed (MAS) were recorded. Lactate and creatine kinase (CK) plasma concentrations were measured. A panel of 752 miRNAs was analyzed using standardized protocols and relative quantification to Pre. A total of 13 miRNAs were found significantly upregulated at Post. By focusing on the exercise markers that correlate with the expression of these miRNAs, they were clustered into different functional groups or subsignatures. Thus, miR-21-5p, miR-29b-3p, and miR-183-5p showed a strong correlation with HRmax and a validated target signature related to fatty acid metabolism. Furthermore, let-7c-5p, miR-340-5p, miR-425-3p, and miR-629-5p were significantly correlated with CK, and the most significantly enriched pathways for these subsignatures were the Hippo signaling pathway and signaling pathways regulating pluripotency of stem cells. Finally, Pre miR-106b-5p expression showed an inverse association with MAS and Post lactate concentration, which highlights its relevance as biomarker of training status and its predictive value for performance. No significant correlations were observed with V̇o2max. Our results define for the first time specific functional c-miRNA subsignatures, adding novel evidence about their potential regulatory role in exercise response.


Asunto(s)
MicroARN Circulante , MicroARNs , Biomarcadores , Ejercicio Físico , Prueba de Esfuerzo , Masculino , MicroARNs/genética
18.
Scand J Med Sci Sports ; 30(10): 1896-1907, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32609897

RESUMEN

The systemic response to exercise is dose-dependent and involves a complex gene expression regulation and cross-talk between tissues. This context ARISES the need for analyzing the influence of exercise dose on the profile of circulating microRNAs (c-miRNAs), as emerging posttranscriptional regulators and intercellular communicators. Thus, we hypothesized that different exercise doses will determine specific c-miRNA signatures that will highlight its potential as exercise dose biomarker. Nine active middle-aged males completed a 10-km race (10K), a half-marathon (HM), and a marathon (M). Blood samples were collected immediately before and after races. Plasma RNA was extracted, and a global screening of 752 microRNAs was analyzed using RT-qPCR. Three different c-miRNA profiles were defined according to the three doses. In 10K, 14 c-miRNAs were found to be differentially expressed between pre- and post-exercise, 13 upregulated and 1 downregulated. Regarding HM, 13 c-miRNAs were found to be differentially modulated, in all the cases upregulated. A total of 28 c-miRNAs were found to be differentially expressed in M, 21 overexpressed and 7 repressed after this race. We had also found 3 common c-miRNAs between 10K and M and 2 common c-miRNAs between 10K and HM. In silico analysis supported a close association between exercise dose c-miRNA profiles and cellular pathways linked to energy metabolism and cell cycle. In conclusion, we have observed that different exercise doses induced specific c-miRNA profiles. So, our results point to c-miRNAs as emerging exercise dose biomarkers and as one of regulatory mechanisms modulating the response to endurance exercise.


Asunto(s)
Comunicación Celular/fisiología , MicroARN Circulante/sangre , Resistencia Física/fisiología , Carrera/fisiología , Biomarcadores/sangre , Registros de Dieta , Regulación hacia Abajo , Humanos , Masculino , Carrera de Maratón/fisiología , Procesamiento Postranscripcional del ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba
19.
J Lipid Res ; 59(1): 14-24, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074607

RESUMEN

An abnormal acyl-CoA synthetase/stearoyl-CoA desaturase (ACSL/SCD) lipid network fuels colon cancer progression, endowing cells with invasive and migratory properties. Therapies against this metabolic network may be useful to improve clinical outcomes. Because micro-RNAs (miRNAs/miRs) are important epigenetic regulators, we investigated novel miRNAs targeting this pro-tumorigenic axis; hence to be used as therapeutic or prognostic miRNAs. Thirty-one putative common miRNAs were predicted to simultaneously target the three enzymes comprising the ACSL/SCD network. Target validation by quantitative RT-PCR, Western blotting, and luciferase assays showed miR-544a, miR-142, and miR-19b-1 as major regulators of the metabolic axis, ACSL/SCD Importantly, lower miR-19b-1 expression was associated with a decreased survival rate in colorectal cancer (CRC) patients, accordingly with ACSL/SCD involvement in patient relapse. Finally, miR-19b-1 regulated the pro-tumorigenic axis, ACSL/SCD, being able to inhibit invasion in colon cancer cells. Because its expression correlated with an increased survival rate in CRC patients, we propose miR-19b-1 as a potential noninvasive biomarker of disease-free survival and a promising therapeutic miRNA in CRC.


Asunto(s)
Coenzima A Ligasas/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Metabolismo de los Lípidos/genética , MicroARNs/genética , MicroARNs/uso terapéutico , Estearoil-CoA Desaturasa/metabolismo , Células Cultivadas , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Biología Computacional , Progresión de la Enfermedad , Células HEK293 , Humanos
20.
Pharmacol Res ; 132: 21-32, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29627443

RESUMEN

The possibility that diet-derived miRNAs survive the gastrointestinal tract and exert biological effects in target cells is triggering considerable research in the potential abilities of alimentary preventive and therapeutic approaches. Many validation attempts have been carried out and investigators disagree on several issues. The barriers exogenous RNAs must surpass are harsh and adequate copies must reach target cells for biological actions to be carried out. This prospect opened a window for previously unlikely scenarios concerning exogenous non-coding RNAs, such as a potential role for breast milk microRNAs in infants' development and maturation. This review is focused on the thorny path breast milk miRNAs face towards confirmation as relevant role players in infants' development and maturation, taking into consideration the research carried out so far on the uptake, gastrointestinal barriers and potential biological effects of diet-derived miRNAs. We also discuss the future pharmacological and pharma-nutritional consequences of appropriate miRNAs research.


Asunto(s)
MicroARNs , Leche Humana , Animales , Disponibilidad Biológica , Desarrollo Infantil , Humanos , Recién Nacido , Lípidos , MicroARNs/administración & dosificación , MicroARNs/inmunología , MicroARNs/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA