RESUMEN
Survival requires the integration of external information and interoceptive cues to effectively guide advantageous behaviors, particularly foraging and other behaviors that promote energy acquisition and consumption. The vagus nerve acts as a critical relay between the abdominal viscera and the brain to convey metabolic signals. This review synthesizes recent findings from rodent models and humans revealing the impact of vagus nerve signaling from the gut on the control of higher-order neurocognitive domains, including anxiety, depression, reward motivation, and learning and memory. We propose a framework where meal consumption engages gastrointestinal tract-originating vagal afferent signaling that functions to alleviate anxiety and depressive-like states, while also promoting motivational and memory functions. These concurrent processes serve to favor the encoding of meal-relevant information into memory storage, thus facilitating future foraging behaviors. Modulation of these neurocognitive domains by vagal tone is also discussed in the context of pathological conditions, including the use of transcutaneous vagus nerve stimulation for the treatment of anxiety disorders, major depressive disorder, and dementia-associated memory impairments. Collectively, these findings highlight the contributions of gastrointestinal vagus nerve signaling to the regulation of neurocognitive processes that shape various adaptive behavioral responses.
Asunto(s)
Trastorno Depresivo Mayor , Humanos , Eje Cerebro-Intestino , Encéfalo/fisiología , Nervio Vago/fisiología , CogniciónRESUMEN
Western diet (WD) consumption during early life developmental periods is associated with impaired memory function, particularly for hippocampus (HPC)-dependent processes. We developed an early life WD rodent model associated with long-lasting HPC dysfunction to investigate the neurobiological mechanisms mediating these effects. Rats received either a cafeteria-style WD (ad libitum access to various high-fat/high-sugar foods; CAF) or standard healthy chow (CTL) during the juvenile and adolescent stages (postnatal days 26-56). Behavioral and metabolic assessments were performed both before and after a healthy diet intervention period beginning at early adulthood. Results revealed HPC-dependent contextual episodic memory impairments in CAF rats that persisted despite the healthy diet intervention. Given that dysregulated HPC acetylcholine (ACh) signaling is associated with memory impairments in humans and animal models, we examined protein markers of ACh tone in the dorsal HPC (HPCd) in CAF and CTL rats. Results revealed significantly lower protein levels of vesicular ACh transporter in the HPCd of CAF vs. CTL rats, indicating chronically reduced ACh tone. Using intensity-based ACh sensing fluorescent reporter (iAChSnFr) in vivo fiber photometry targeting the HPCd, we next revealed that ACh release during object-contextual novelty recognition was highly predictive of memory performance and was disrupted in CAF vs. CTL rats. Neuropharmacological results showed that alpha 7 nicotinic ACh receptor agonist infusion in the HPCd during training rescued memory deficits in CAF rats. Overall, these findings reveal a functional connection linking early life WD intake with long-lasting dysregulation of HPC ACh signaling, thereby identifying an underlying mechanism for WD-associated memory impairments.
Asunto(s)
Acetilcolina , Dieta Occidental , Humanos , Ratas , Animales , Adolescente , Adulto , Acetilcolina/metabolismo , Memoria/fisiología , Hipocampo/metabolismo , Transducción de Señal , Trastornos de la Memoria/metabolismoRESUMEN
Mitochondrial DNA variants have previously associated with disease, but the underlying mechanisms have been largely elusive. Here, we report that mitochondrial SNP rs2853499 associated with Alzheimer's disease (AD), neuroimaging, and transcriptomics. We mapped rs2853499 to a novel mitochondrial small open reading frame called SHMOOSE with microprotein encoding potential. Indeed, we detected two unique SHMOOSE-derived peptide fragments in mitochondria by using mass spectrometry-the first unique mass spectrometry-based detection of a mitochondrial-encoded microprotein to date. Furthermore, cerebrospinal fluid (CSF) SHMOOSE levels in humans correlated with age, CSF tau, and brain white matter volume. We followed up on these genetic and biochemical findings by carrying out a series of functional experiments. SHMOOSE acted on the brain following intracerebroventricular administration, differentiated mitochondrial gene expression in multiple models, localized to mitochondria, bound the inner mitochondrial membrane protein mitofilin, and boosted mitochondrial oxygen consumption. Altogether, SHMOOSE has vast implications for the fields of neurobiology, Alzheimer's disease, and microproteins.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , ADN Mitocondrial/genética , Biomarcadores/líquido cefalorraquídeo , MicropéptidosRESUMEN
BACKGROUND: Oxytocin (OT) is a hypothalamic neuropeptide involved in diverse physiological and behavioral functions, including social-based behavior and food intake control. The extent to which OT's role in regulating these 2 fundamental behaviors is interconnected is unknown, which is a critical gap in knowledge given that social factors have a strong influence on eating behavior in mammals. Here, we focus on OT signaling in the dorsal hippocampus (HPCd), a brain region recently linked to eating and social memory, as a candidate system where these functions overlap. METHODS: HPCd OT signaling gain- and loss-of-function strategies were used in male Sprague Dawley rats that were trained in a novel social eating procedure to consume their first nocturnal meal under conditions that varied with regard to conspecific presence and familiarity. The endogenous role of HPCd OT signaling was also evaluated for olfactory-based social transmission of food preference learning, sociality, and social recognition memory. RESULTS: HPCd OT administration had no effect on food intake under isolated conditions but significantly increased consumption in the presence of a familiar but not an unfamiliar conspecific. Supporting these results, chronic knockdown of HPCd OT receptor expression eliminated the food intake-promoting effects of a familiar conspecific. HPCd OT receptor knockdown also blocked social transmission of food preference learning and impaired social recognition memory without affecting sociality. CONCLUSIONS: Collectively, the results of the current study identify endogenous HPCd OT signaling as a novel substrate in which OT synergistically influences eating and social behaviors, including the social facilitation of eating and the social transmission of food preference.
RESUMEN
The hippocampus (HPC), traditionally known for its role in learning and memory, has emerged as a controller of food intake. While prior studies primarily associated the HPC with food intake inhibition, recent research suggests a critical role in appetitive processes. We hypothesized that orexigenic HPC neurons differentially respond to fats and/or sugars, potent natural reinforcers that contribute to obesity development. Results uncover previously-unrecognized, spatially-distinct neuronal ensembles within the dorsal HPC (dHPC) that are responsive to separate nutrient signals originating from the gut. Using activity-dependent genetic capture of nutrient-responsive HPC neurons, we demonstrate a causal role of both populations in promoting nutrient-specific preference through different mechanisms. Sugar-responsive neurons encode an appetitive spatial memory engram for meal location, whereas fat-responsive neurons selectively enhance the preference and motivation for fat intake. Collectively, these findings uncover a neural basis for the exquisite specificity in processing macronutrient signals from a meal that shape dietary choices.
RESUMEN
BACKGROUND: A better understanding of the neural mechanisms regulating impaired satiety to palatable foods is essential to treat hyperphagia linked with obesity. The satiation hormone amylin signals centrally at multiple nuclei including the ventral tegmental area (VTA). VTA-to-medial prefrontal cortex (mPFC) projections encode food reward information to influence behaviors including impulsivity. We hypothesized that modulation of VTA-to-mPFC neurons underlies amylin-mediated decreases in palatable food-motivated behaviors. METHODS: We used a variety of pharmacological, behavioral, genetic, and viral approaches (n = 4-16/experiment) to investigate the anatomical and functional circuitry of amylin-controlled VTA-to-mPFC signaling in rats. RESULTS: To first establish that VTA amylin receptor (calcitonin receptor) activation can modulate mPFC activity, we showed that intra-VTA amylin decreased food-evoked mPFC cFos. VTA amylin delivery also attenuated food-directed impulsive behavior, implicating VTA amylin signaling as a regulator of mPFC functions. Palatable food activates VTA dopamine and mPFC neurons. Accordingly, dopamine receptor agonism in the mPFC blocked the hypophagic effect of intra-VTA amylin, and VTA amylin injection reduced food-evoked phasic dopamine levels in the mPFC, supporting the idea that VTA calcitonin receptor activation decreases dopamine release in the mPFC. Surprisingly, calcitonin receptor expression was not found on VTA-to-mPFC projecting neurons but was instead found on GABAergic (gamma-aminobutyric acidergic) interneurons in the VTA that provide monosynaptic inputs to this pathway. Blocking intra-VTA GABA signaling, through GABA receptor antagonists and DREADD (designer receptor exclusively activated by designer drugs)-mediated GABAergic neuronal silencing, attenuated intra-VTA amylin-induced hypophagia. CONCLUSIONS: These results indicate that VTA amylin signaling stimulates GABA-mediated inhibition of dopaminergic projections to the mPFC to mitigate impulsive consumption of palatable foods.
RESUMEN
The lateral hypothalamic area (LHA) integrates homeostatic processes and reward-motivated behaviors. Here we show that LHA neurons that produce melanin-concentrating hormone (MCH) are dynamically responsive to both food-directed appetitive and consummatory processes in male rats. Specifically, results reveal that MCH neuron Ca2+ activity increases in response to both discrete and contextual food-predictive cues and is correlated with food-motivated responses. MCH neuron activity also increases during eating, and this response is highly predictive of caloric consumption and declines throughout a meal, thus supporting a role for MCH neurons in the positive feedback consummatory process known as appetition. These physiological MCH neural responses are functionally relevant as chemogenetic MCH neuron activation promotes appetitive behavioral responses to food-predictive cues and increases meal size. Finally, MCH neuron activation enhances preference for a noncaloric flavor paired with intragastric glucose. Collectively, these data identify a hypothalamic neural population that orchestrates both food-motivated appetitive and intake-promoting consummatory processes.
Asunto(s)
Hormonas Hipotalámicas , Ratas , Masculino , Animales , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Hormonas Hipofisarias , Melaninas , Área Hipotalámica Lateral/metabolismo , Neuronas/metabolismoRESUMEN
Western diet (WD) consumption during development yields long-lasting memory impairments, yet the underlying neurobiological mechanisms remain elusive. Here we developed an early life WD rodent model to evaluate whether dysregulated hippocampus (HPC) acetylcholine (ACh) signaling, a pathology associated with memory impairment in human dementia, is causally-related to WD-induced cognitive impairment. Rats received a cafeteria-style WD (access to various high-fat/high-sugar foods; CAF) or healthy chow (CTL) during the juvenile and adolescent periods (postnatal days 26-56). Behavioral, metabolic, and microbiome assessments were performed both before and after a 30-day healthy diet intervention beginning at early adulthood. Results revealed CAF-induced HPC-dependent contextual episodic memory impairments that persisted despite healthy diet intervention, whereas CAF was not associated with long-term changes in body weight, body composition, glucose tolerance, anxiety-like behavior, or gut microbiome. HPC immunoblot analyses after the healthy diet intervention identified reduced levels of vesicular ACh transporter in CAF vs. CTL rats, indicative of chronically reduced HPC ACh tone. To determine whether these changes were functionally related to memory impairments, we evaluated temporal HPC ACh binding via ACh-sensing fluorescent reporter in vivo fiber photometry during memory testing, as well as whether the memory impairments could be rescued pharmacologically. Results revealed dynamic HPC ACh binding during object-contextual novelty recognition was highly predictive of memory performance and was disrupted in CAF vs. CTL rats. Further, HPC alpha-7 nicotinic receptor agonist infusion during consolidation rescued memory deficits in CAF rats. Overall, these findings identify dysregulated HPC ACh signaling as a mechanism underlying early life WD-associated memory impairments.
RESUMEN
The ability to encode and retrieve meal-related information is critical to efficiently guide energy acquisition and consumption, yet the underlying neural processes remain elusive. Here we reveal that ventral hippocampus (HPCv) neuronal activity dynamically elevates during meal consumption and this response is highly predictive of subsequent performance in a foraging-related spatial memory task. Targeted recombination-mediated ablation of HPCv meal-responsive neurons impairs foraging-related spatial memory without influencing food motivation, anxiety-like behavior, or escape-mediated spatial memory. These HPCv meal-responsive neurons project to the lateral hypothalamic area (LHA) and single-nucleus RNA sequencing and in situ hybridization analyses indicate they are enriched in serotonin 2a receptors (5HT2aR). Either chemogenetic silencing of HPCv-to-LHA projections or intra-HPCv 5HT2aR antagonist yielded foraging-related spatial memory deficits, as well as alterations in caloric intake and the temporal sequence of spontaneous meal consumption. Collective results identify a population of HPCv neurons that dynamically respond to eating to encode meal-related memories.
RESUMEN
The incidence of depression and anxiety is amplified by obesity. Mounting evidence reveals that the psychiatric consequences of obesity stem from poor diet, inactivity, and visceral adipose accumulation. Resulting metabolic and vascular dysfunction, including inflammation, insulin and leptin resistance, and hypertension, have emerged as key risks to depression and anxiety development. Recent research advancements are exposing the important contribution of these different corollaries of obesity and their impact on neuroimmune status and the neural circuits controlling mood and emotional states. Along these lines, this review connects the clinical manifestations of depression and anxiety in obesity to our current understanding of the origins and biology of immunometabolic threats to central nervous system function and behavior.
Asunto(s)
Ansiedad , Depresión , Depresión/epidemiología , Depresión/etiología , Depresión/metabolismo , Humanos , Inflamación/metabolismo , Obesidad/complicaciones , Obesidad/epidemiología , PrevalenciaRESUMEN
PURPOSE: Pediatric obesity is a growing public health concern. Previous work has observed diet to impact nucleus accumbens (NAcc) inflammation in rodents, measured by the reactive proliferation of glial cells. Recent work in humans has demonstrated a relationship between NAcc cell density-a proxy for neuroinflammation-and weight gain in youth; however, the directionality of this relationship in the developing brain and association with diet remains unknown. METHODS: Waist circumference (WC) and NAcc cell density were collected in a large cohort of children (n > 2,000) participating in the Adolescent Brain Cognitive Development (ABCD) Study (release 3.0) at baseline (9-10 y) and at a Year 2 follow-up (11-12 y). Latent change score modeling (LCSM) was used to disentangle contributions of baseline measures to two-year changes in WC percentile and NAcc cellularity. In addition, the role of NAcc cellularity in mediating the relationship between diet and WC percentile was assessed using dietary intake data collected at Year 2. RESULTS: LCSM indicates that baseline WC percentile influences change in NAcc cellularity and that baseline NAcc cell density influences change in WC percentile. NAcc cellularity was significantly associated with WC percentile at Year 2 and mediated the relationship between dietary fat consumption and WC percentile. CONCLUSIONS: These results implicate a vicious cycle whereby NAcc cell density biases longitudinal changes in WC percentile and vice versa. Moreover, NAcc cell density may mediate the relationship between diet and weight gain in youth. These findings suggest that diet-induced inflammation of reward circuitry may lead to behavioral changes that further contribute to weight gain.
Asunto(s)
Núcleo Accumbens , Obesidad Infantil , Adolescente , Índice de Masa Corporal , Niño , Humanos , Inflamación , Circunferencia de la Cintura , Aumento de PesoRESUMEN
Children frequently consume beverages that are either sweetened with sugars (sugar-sweetened beverages; SSB) or low-calorie sweeteners (LCS). Here, we evaluated the effects of habitual early life consumption of either SSB or LCS on energy balance later during adulthood. Male and female rats were provided with chow, water, and a solution containing either SSB (sucrose), LCS (acesulfame potassium (ACE-K) or stevia), or control (no solution) during the juvenile and adolescent periods (postnatal days 26-70). SSB or LCS consumption was voluntary and restricted within the recommended federal daily limits. When subsequently maintained on a cafeteria-style junk food diet (CAF; various high-fat, high-sugar foods) during adulthood, ACE-K-exposed rats demonstrated reduced caloric consumption vs. the controls, which contributed to lower body weights in female, but not male, ACE-K rats. These discrepant intakes and body weight effects in male ACE-K rats are likely to be based on reduced gene expression of thermogenic indicators (UCP1, BMP8B) in brown adipose tissue. Female stevia-exposed rats did not differ from the controls in terms of caloric intake or body weight, yet they consumed more SSB during CAF exposure in adulthood. None of the SSB-exposed rats, neither male nor female, differed from the controls in terms of total adult caloric consumption or body weight measures. The collective results reveal that early life LCS consumption alters sugar preference, body weight, and gene expression for markers of thermogenesis during adulthood, with both sex- and sweetener-dependent effects.
Asunto(s)
Ingestión de Energía , Edulcorantes , Femenino , Ratas , Animales , Edulcorantes/farmacología , Metabolismo Energético , Peso Corporal , AzúcaresRESUMEN
Mutations in the putative glutamatergic synapse scaffolding protein SAP97 are associated with the development of schizophrenia in humans. However, the role of SAP97 in synaptic regulation is unclear. Here we show that SAP97 is expressed in the dendrites of granule neurons in the dentate gyrus but not in the dendrites of other hippocampal neurons. Schizophrenia-related perturbations of SAP97 did not affect CA1 pyramidal neuron synapse function. Conversely, these perturbations produce dramatic augmentation of glutamatergic neurotransmission in granule neurons that can be attributed to a release of perisynaptic GluA1-containing AMPA receptors into the postsynaptic densities of perforant pathway synapses. Furthermore, inhibiting SAP97 function in the dentate gyrus was sufficient to impair contextual episodic memory. Together, our results identify a cell-type-specific synaptic regulatory mechanism in the dentate gyrus that, when disrupted, impairs contextual information processing in rats.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Giro Dentado/fisiología , Proteínas de la Membrana/genética , Memoria Episódica , Mutación , Esquizofrenia/genética , Sinapsis/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Masculino , Neuronas/metabolismo , Densidad Postsináptica/metabolismo , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Esquizofrenia/metabolismo , Transmisión Sináptica/fisiologíaRESUMEN
Remembering the location of a food or water source is essential for survival. Here, we reveal that spatial memory for food location is reflected in ventral hippocampus (HPCv) neuron activity and is impaired by HPCv lesion. HPCv mediation of foraging-related memory involves communication to the lateral septum (LS), as either reversible or chronic disconnection of HPCv-to-LS signaling impairs spatial memory retention for food or water location. This neural pathway selectively encodes appetitive spatial memory, as HPCv-LS disconnection does not affect spatial memory for escape location in a negative reinforcement procedure, food intake, or social and olfactory-based appetitive learning. Neural pathway tracing and functional mapping analyses reveal that LS neurons recruited during the appetitive spatial memory procedure are primarily GABAergic neurons that project to the lateral hypothalamus. Collective results emphasize that the neural substrates controlling spatial memory are outcome specific based on reinforcer modality.
Asunto(s)
Hipocampo , Memoria Espacial , Neuronas GABAérgicas , Hipocampo/metabolismo , Vías Nerviosas/fisiología , Memoria Espacial/fisiología , AguaRESUMEN
Eating behaviors are influenced by the reinforcing properties of foods that can favor decisions driven by reward incentives over metabolic needs. These food reward-motivated behaviors are modulated by gut-derived peptides such as ghrelin and glucagon-like peptide-1 (GLP-1) that are well-established to promote or reduce energy intake, respectively. In this review we highlight the antagonizing actions of ghrelin and GLP-1 on various behavioral constructs related to food reward/reinforcement, including reactivity to food cues, conditioned meal anticipation, effort-based food-motivated behaviors, and flavor-nutrient preference and aversion learning. We integrate physiological and behavioral neuroscience studies conducted in both rodents and human to illustrate translational findings of interest for the treatment of obesity or metabolic impairments. Collectively, the literature discussed herein highlights a model where ghrelin and GLP-1 regulate food reward-motivated behaviors via both competing and independent neurobiological and behavioral mechanisms.
Asunto(s)
Encéfalo/fisiología , Conducta Alimentaria/fisiología , Tracto Gastrointestinal/fisiología , Ghrelina/fisiología , Péptido 1 Similar al Glucagón/fisiología , Animales , Alimentos , Humanos , RecompensaRESUMEN
The dietary pattern in industrialized countries has changed substantially over the past century due to technological advances in agriculture, food processing, storage, marketing, and distribution practices. The availability of highly palatable, calorically dense foods that are shelf-stable has facilitated a food environment where overconsumption of foods that have a high percentage of calories derived from fat (particularly saturated fat) and sugar is extremely common in modern Westernized societies. In addition to being a predictor of obesity and metabolic dysfunction, consumption of a Western diet (WD) is related to poorer cognitive performance across the lifespan. In particular, WD consumption during critical early life stages of development has negative consequences on various cognitive abilities later in adulthood. This review highlights rodent model research identifying dietary, metabolic, and neurobiological mechanisms linking consumption of a WD during early life periods of development (gestation, lactation, juvenile and adolescence) with behavioral impairments in multiple cognitive domains, including anxiety-like behavior, learning and memory function, reward-motivated behavior, and social behavior. The literature supports a model in which early life WD consumption leads to long-lasting neurocognitive impairments that are largely dissociable from WD effects on obesity and metabolic dysfunction.
RESUMEN
Obesity significantly increases the risk for anxiety and depression. Our group has recently demonstrated a role for nucleus accumbens (NAc) pro-inflammatory nuclear factor kappa-B (NFkB) signaling in the development of anxiodepressive-like behaviors by diet-induced obesity in male mice. The NAc is a brain region involved in goal-oriented behavior and mood regulation whose functions are critical to hedonic feeding and motivation. While the incidence of depression and anxiety disorders is significantly higher in women than in men, the use of female animal models in psychiatric research remains limited. We set out to investigate the impact of chronic intake of saturated and monounsaturated high-fat diets (HFD) on energy metabolism and on anxiety- and despair-like behaviors in female mice and to ascertain the contribution of NAc NFkB-mediated inflammation herein. Adult C57Bl6N female mice were fed either a saturated HFD, an isocaloric monounsaturated HFD or a control low-fat diet for 24 weeks, after which metabolic profiling and behavioral testing for anxiodepressive-like behaviors were conducted. Plasma was collected at time of sacrifice for quantification of leptin, inflammatory markers as well as 17 ß-estradiol levels and brains were harvested to analyze NAc expression of pro-inflammatory genes and estrogen-signaling molecules. In another group of female mice placed on the saturated HFD or the control diet for 24 weeks, we performed adenoviral-mediated invalidation of the NFkB signaling pathway in the NAc prior to behavioral testing. While both HFDs provoked obesity and metabolic impairments, only the saturated HFD triggered anxiodepressive-like behaviors and caused marked elevations in plasma estrogen. This saturated HFD-specific behavioral phenotype could not be explained by NAc inflammation alone and was unaffected by NAc invalidation of the NFkB signaling pathway. Instead, we found changes in the expression of estrogen signaling markers. Such results diverge from the inflammatory mechanisms underlying diet- and obesity-induced metabolic dysfunction and anxiodepressive-like behavior onset in male mice and call attention to the role of estrogen signaling in diet-related anxiodepressive-like phenotypes in female mice.
RESUMEN
BACKGROUND: Pharmacotherapies targeting motivational aspects of feeding and palatable food reward, while sparing mood and cognitive function, represent an alluring approach to reverse obesity and maintain weight loss in an obesogenic environment. A novel glucagon-like peptide-1/dexamethasone (GLP-1/Dexa) conjugate, developed to selectively activate glucocorticoid receptors in GLP-1 receptor-expressing cells was shown to decrease food intake and lower body weight in obese mice. Here, we investigate if this novel drug candidate modulates the rewarding properties of food and if it affects behavioral indices of mood and memory. METHODS: C57Bl6 mice treated with the GLP-1/Dexa conjugate, GLP-1 or vehicle lever-pressed for high-fat, high sugar (HFHS) food rewards in an operant task. Alterations in food-motivated behavior were also assessed following a HFHS diet withdrawal manipulation (switch to chow). The effects of repeated GLP-1/Dexa conjugate, GLP-1 or vehicle on free-feeding intake, body weight, anxiodepressive behaviors (elevated-plus maze, open field test & forced swim test), memory (novel object recognition) and mRNA expression of reward-relevant markers in the nucleus accumbens were also evaluated in mice fed a HFHS diet for 12 weeks. RESULTS: Mice treated with a GLP-1 analogue displayed a transient (4â¯h) reduction in their motivation to lever press for HFHS reward, whereas treatment with equimolar doses of GLP-1/Dexa delivered a superior and sustained (20â¯h) suppression of food-motivated behavior. GLP-1/Dexa also inhibited food reward following withdrawal from the HFHS diet. These benefits coincided with related transcriptional changes of dopaminergic markers in the nucleus accumbens. Importantly, repeated GLP-1/Dexa treatment during a HFHS diet caused weight loss without affecting anxiodepressive behavior and memory. CONCLUSION: Via its actions to blunt the rewarding effects of palatable food without affecting mood and recognition memory, GLP-1-directed targeting of dexamethasone may serve as a promising and safe anti-obesity strategy.
Asunto(s)
Afecto/efectos de los fármacos , Dexametasona/farmacología , Alimentos , Péptido 1 Similar al Glucagón/farmacología , Memoria/efectos de los fármacos , Motivación/efectos de los fármacos , Recompensa , Animales , Condicionamiento Operante/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , RatonesRESUMEN
BACKGROUND/OBJECTIVES: Body composition (BC) does not always vary as a function of exercise induced energy expenditure (exercise EE - resting EE). Energy balance variables were measured to understand energy compensation (EC) in response to an exercise intervention performed at low (LOW) or moderate (MOD) intensity. SUBJECTS/METHODS: Twenty-one women with overweight/obesity (33 ± 5 kg/m2; 29 ± 10 yrs; 31 ± 4 ml O2/kg/min) were randomized to a 3-month LOW or MOD (40 or 60% of VÈ®2reserve, respectively) matched to expend 1500 kcal/week (compliance = 97 ± 5%). Body energy stores (DXA), energy intake (EI) (food menu and food diaries), resting EE (indirect calorimetry), total EE (doubly-labeled water), time spent in different activities (accelerometers), appetite (visual analog scale), eating behavior traits and food reward (liking and wanting) were assessed at baseline, after weeks 1 and 2 and at the end of the 3-month exercise intervention. RESULTS: EC based on BC changes (fat mass and fat-free mass) was 49 ± 79% and 161 ± 88% in LOW and MOD groups, respectively (p = 0.010). EI did not change significantly during the intervention. However, eating behavior traits and food reward had changed by the end of the 3-month supervised exercise. Non-structured physical activity (NSPA) decreased across the intervention (p < 0.002), independent of the intensity of the exercise training. CONCLUSION: Women with overweight/obesity training at LOW presented lower EC for a given energy cost of exercise. Our results strongly suggest that NSPA plays a major role in mediating the effects of exercise on energy balance and ultimately on changes in BC. CLINICAL TRIAL REGISTRATION: www.ClinicalTrials.gov, identifier ISRCTN31641049.