Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361823

RESUMEN

In recent years, nanocarbon materials have attracted the interest of researchers due to their excellent properties. Nanocarbon-based flame retardant polymer composites have enhanced thermal stability and mechanical properties compared with traditional flame retardant composites. In this article, the unique structural features of nanocarbon-based materials and their use in flame retardant polymeric materials are initially introduced. Afterwards, the flame retardant mechanism of nanocarbon materials is described. The main discussions include material components such as graphene, carbon nanotubes, fullerene (in preparing resins), elastomers, plastics, foams, fabrics, and film-matrix materials. Furthermore, the flame retardant properties of carbon nanomaterials and their modified products are summarized. Carbon nanomaterials not only play the role of a flame retardant in composites, but also play an important role in many aspects such as mechanical reinforcement. Finally, the opportunities and challenges for future development of carbon nanomaterials in flame-retardant polymeric materials are briefly discussed.

2.
Sci Rep ; 12(1): 5228, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347155

RESUMEN

The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy-Forchheimer flow. The Extended Darcy-Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert-Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA