Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Data ; 7(1): 220, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641714

RESUMEN

Successful design of enhanced geothermal systems (EGSs) requires accurate numerical simulation of hydraulic stimulation processes in the subsurface. To ensure correct prediction, the underlying model assumptions and constitutive relationships of simulators need to be verified against experimental datasets. With the aim of generating laboratory-scale benchmark datasets, a state-of-the-art testing facility was developed, allowing for experiments under controlled conditions. Samples of size 30 cm × 30 cm × 45 cm were subjected to confining stresses while high-pressure fluid was injected into the sample through a pre-drilled borehole, where a saw-cut notch was used to initiate a penny-shaped fracture. Fracture growth and propagation was monitored by measuring pressure data and acoustic emissions detected using 32 seismic sensors. Subsequently, samples were split along the fracture plane to outline the created fracture marked by a red-dyed injection fluid. Finally, a 2D fracture contour was generated using photogrammetry. Presented datasets, accessible via a public repository, include experiments on granite and marble samples. They can be used for verifying and improving numerical codes for field stimulation designs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA