Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 594(7863): 442-447, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079126

RESUMEN

Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1-3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones.


Asunto(s)
Neoplasias Colorrectales/patología , Intestino Delgado/patología , Células Madre Neoplásicas/patología , Oncogenes , Nicho de Células Madre , Animales , Células Clonales/patología , Neoplasias Colorrectales/genética , Femenino , Intestino Delgado/metabolismo , Masculino , Ratones , Mutación , Células Madre Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Nicho de Células Madre/genética , Microambiente Tumoral , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
2.
Adv Exp Med Biol ; 930: 89-112, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27558818

RESUMEN

Apoptosis, a major form of programmed cell death, is an important mechanism to remove extra or unwanted cells during development. In tissue homeostasis apoptosis also acts as a monitoring machinery to eliminate damaged cells in response to environmental stresses. During these processes, caspases, a group of proteases, have been well defined as key drivers of cell death. However, a wealth of evidence is emerging which supports the existence of many other non-apoptotic functions of these caspases, which are essential not only in proper organism development but also in tissue homeostasis and post-injury recovery. In particular, apoptotic caspases in stress-induced dying cells can activate mitogenic signals leading to proliferation of neighbouring cells, a phenomenon termed apoptosis-induced proliferation. Apparently, such non-apoptotic functions of caspases need to be controlled and restrained in a context-dependent manner during development to prevent their detrimental effects. Intriguingly, accumulating studies suggest that cancer cells are able to utilise these functions of caspases to their advantage to enable their survival, proliferation and metastasis in order to grow and progress. This book chapter will review non-apoptotic functions of the caspases in development and tissue homeostasis with focus on how these cellular processes can be hijacked by cancer cells and contribute to tumourigenesis.


Asunto(s)
Apoptosis/fisiología , Caspasas/fisiología , Proteínas de Neoplasias/fisiología , Neoplasias/enzimología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Carcinogénesis , División Celular , Daño del ADN , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Homeostasis , Humanos , Mamíferos/fisiología , Mitosis , Metástasis de la Neoplasia , Neoplasias/patología , Neoplasias/fisiopatología , Receptores de Muerte Celular/fisiología , Transducción de Señal/fisiología
3.
Methods Mol Biol ; 2805: 3-18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008171

RESUMEN

Three-dimensional (3D) organoid cultures retain self-renewing stem cells that differentiate into multiple cell types that display spatial organization and functional key features, providing a highly physiological relevant system. Here we describe a strategy for the generation of 3D murine lung organoids derived from freshly isolated primary tracheal and distal lung epithelial stem cells. Isolated tracheas are subjected to enzymatic digestion to release the epithelial layer that is then dissociated into a single cell suspension for organoid culture. Lung epithelial cells are obtained from dissected lobes, which are applied to mechanical and enzymatic dissociation. After flow sorting, organoids are established from tracheal basal, secretory club, and alveolar type 2 cells in the defined conditioned medium that is required to sustain organoid growth and generate the differentiated cells. Multi-cell-type organoid co-culture replicates niches for distal epithelial stem cells to differentiate into bronchiolar and alveolar cell types. Established organoids can be fixed for wholemount staining and paraffin embedding, or passaged for further culture. Taken together, this protocol provides an efficient and validated approach to generate murine lung organoids, as well as a platform for further analysis.


Asunto(s)
Diferenciación Celular , Pulmón , Organoides , Animales , Organoides/citología , Ratones , Pulmón/citología , Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Células Epiteliales/citología , Células Madre/citología , Células Madre/metabolismo , Fenotipo , Tráquea/citología , Técnicas de Cocultivo/métodos
4.
Nat Cell Biol ; 23(9): 953-966, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34475534

RESUMEN

While the acquisition of cellular plasticity in adult stem cells is essential for rapid regeneration after tissue injury, little is known about the underlying mechanisms governing this process. Our data reveal the coordination of airway progenitor differentiation plasticity by inflammatory signals during alveolar regeneration. Following damage, interleukin-1ß (IL-1ß) signalling-dependent modulation of Jag1 and Jag2 expression in ciliated cells results in the inhibition of Notch signalling in secretory cells, which drives the reprogramming and acquisition of differentiation plasticity. We identify the transcription factor Fosl2 (also known as Fra2) for secretory cell fate conversion to alveolar type 2 cells that retain the distinct genetic and epigenetic signatures of secretory lineages. We also reveal that human secretory cells positive for KDR (also known as FLK-1) display a conserved capacity to generate alveolar type 2 cells via Notch inhibition. Our results demonstrate the functional role of an IL-1ß-Notch-Fosl2 axis in the fate decision of secretory cells during injury repair, proposing a potential therapeutic target for human lung alveolar regeneration.


Asunto(s)
Diferenciación Celular/fisiología , Antígeno 2 Relacionado con Fos/metabolismo , Interleucina-1beta/metabolismo , Receptores Notch/metabolismo , Regeneración/fisiología , Animales , Antígeno 2 Relacionado con Fos/genética , Regulación de la Expresión Génica/fisiología , Interleucina-1beta/genética , Ratones , Sistema Respiratorio/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo
5.
Adv Sci (Weinh) ; 8(9): 2003332, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33977046

RESUMEN

Epithelial, stem-cell derived organoids are ideal building blocks for tissue engineering, however, scalable and shape-controlled bio-assembly of epithelial organoids into larger and anatomical structures is yet to be achieved. Here, a robust organoid engineering approach, Multi-Organoid Patterning and Fusion (MOrPF), is presented to assemble individual airway organoids of different sizes into upscaled, scaffold-free airway tubes with predefined shapes. Multi-Organoid Aggregates (MOAs) undergo accelerated fusion in a matrix-depleted, free-floating environment, possess a continuous lumen, and maintain prescribed shapes without an exogenous scaffold interface. MOAs in the floating culture exhibit a well-defined three-stage process of inter-organoid surface integration, luminal material clearance, and lumina connection. The observed shape stability of patterned MOAs is confirmed by theoretical modelling based on organoid morphology and the physical forces involved in organoid fusion. Immunofluorescent characterization shows that fused MOA tubes possess an unstratified epithelium consisting mainly of tracheal basal stem cells. By generating large, shape-controllable organ tubes, MOrPF enables upscaled organoid engineering towards integrated organoid devices and structurally complex organ tubes.


Asunto(s)
Morfogénesis/fisiología , Organoides/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Ingeniería de Tejidos/métodos , Tráquea/fisiología , Animales , Biomimética , Fusión Celular , Ratones , Modelos Animales , Células Madre
6.
Cell Stem Cell ; 25(3): 342-356.e7, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31422913

RESUMEN

The gastric corpus epithelium is the thickest part of the gastrointestinal tract and is rapidly turned over. Several markers have been proposed for gastric corpus stem cells in both isthmus and base regions. However, the identity of isthmus stem cells (IsthSCs) and the interaction between distinct stem cell populations is still under debate. Here, based on unbiased genetic labeling and biophysical modeling, we show that corpus glands are compartmentalized into two independent zones, with slow-cycling stem cells maintaining the base and actively cycling stem cells maintaining the pit-isthmus-neck region through a process of "punctuated" neutral drift dynamics. Independent lineage tracing based on Stmn1 and Ki67 expression confirmed that rapidly cycling IsthSCs maintain the pit-isthmus-neck region. Finally, single-cell RNA sequencing (RNA-seq) analysis is used to define the molecular identity and lineage relationship of a single, cycling, IsthSC population. These observations define the identity and functional behavior of IsthSCs.


Asunto(s)
Células Madre Adultas/citología , Mucosa Gástrica/citología , Estómago/citología , Células Madre Adultas/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula , Autorrenovación de las Células , Células Cultivadas , Mucosa Gástrica/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Estatmina/metabolismo , Nicho de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA