Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arthritis Res Ther ; 23(1): 262, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663440

RESUMEN

BACKGROUND: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs. METHODS: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (OAI) database , we implemented a deep learning method to predict, from MR images and clinical variables including body mass index (BMI), further cartilage degradation measured by joint space narrowing at 12 months. RESULTS: Using COR IW TSE images, our classification model achieved a ROC AUC score of 65%. On a similar task, trained radiologists obtained a ROC AUC score of 58.7% highlighting the difficulty of the classification task. Additional analyses conducted in parallel to predict pain grade evaluated by the WOMAC pain index achieved a ROC AUC score of 72%. Attention maps provided evidence for distinct specific areas as being relevant in those two predictive models, including the medial joint space for JSN progression and the intra-articular space for pain prediction. CONCLUSIONS: This feasibility study demonstrates the interest of deep learning applied to OA, with a potential to support even trained radiologists in the challenging task of identifying patients with a high-risk of disease progression.


Asunto(s)
Cartílago Articular , Aprendizaje Profundo , Osteoartritis de la Rodilla , Progresión de la Enfermedad , Humanos , Articulación de la Rodilla , Imagen por Resonancia Magnética , Osteoartritis de la Rodilla/diagnóstico por imagen
2.
Nat Commun ; 12(1): 634, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504775

RESUMEN

The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to the deep learning model. We show that neural network analysis of CT-scans brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP) explaining the measurable but limited 0.03 increase of AUC obtained when adding CT-scan information to clinical variables. Here, we show that when comparing AI-severity with 11 existing severity scores, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a reference scoring approach.


Asunto(s)
COVID-19/diagnóstico , COVID-19/fisiopatología , Aprendizaje Profundo , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos , Inteligencia Artificial , COVID-19/clasificación , Humanos , Modelos Biológicos , Análisis Multivariante , Pronóstico , Radiólogos , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA