Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 144(2): 201-210, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27993979

RESUMEN

Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.


Asunto(s)
Ventrículos Cerebrales/embriología , Cilios/fisiología , Morfogénesis , Complejos Multiproteicos/fisiología , Neurogénesis/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Polaridad Celular/efectos de los fármacos , Ventrículos Cerebrales/efectos de los fármacos , Ventrículos Cerebrales/metabolismo , Cilios/efectos de los fármacos , Embrión de Mamíferos , Femenino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Embarazo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
2.
Neuron ; 102(1): 159-172.e7, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30824354

RESUMEN

Adult neural stem cells and multiciliated ependymal cells are glial cells essential for neurological functions. Together, they make up the adult neurogenic niche. Using both high-throughput clonal analysis and single-cell resolution of progenitor division patterns and fate, we show that these two components of the neurogenic niche are lineally related: adult neural stem cells are sister cells to ependymal cells, whereas most ependymal cells arise from the terminal symmetric divisions of the lineage. Unexpectedly, we found that the antagonist regulators of DNA replication, GemC1 and Geminin, can tune the proportion of neural stem cells and ependymal cells. Our findings reveal the controlled dynamic of the neurogenic niche ontogeny and identify the Geminin family members as key regulators of the initial pool of adult neural stem cells.


Asunto(s)
Astrocitos/citología , Epéndimo/citología , Células Ependimogliales/citología , Células-Madre Neurales/citología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Astrocitos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Linaje de la Célula , Replicación del ADN , Electroporación , Embrión de Mamíferos , Células Ependimogliales/metabolismo , Geminina/metabolismo , Ratones , Células-Madre Neurales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA