Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO J ; 31(6): 1350-63, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22246183

RESUMEN

Retrograde axonal injury signalling stimulates cell body responses in lesioned peripheral neurons. The involvement of importins in retrograde transport suggests that transcription factors (TFs) might be directly involved in axonal injury signalling. Here, we show that multiple TFs are found in axons and associate with dynein in axoplasm from injured nerve. Biochemical and functional validation for one TF family establishes that axonal STAT3 is locally translated and activated upon injury, and is transported retrogradely with dynein and importin α5 to modulate survival of peripheral sensory neurons after injury. Hence, retrograde transport of TFs from axonal lesion sites provides a direct link between axon and nucleus.


Asunto(s)
Axones/metabolismo , Ganglios Espinales/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/metabolismo , Animales , Transporte Axonal/fisiología , Núcleo Celular/metabolismo , Dineínas/metabolismo , Carioferinas/metabolismo , Masculino , Ratones , Transporte de Proteínas/fisiología , Ratas , Ratas Wistar , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología
2.
Science ; 369(6505): 842-846, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32792398

RESUMEN

How is neuropathic pain regulated in peripheral sensory neurons? Importins are key regulators of nucleocytoplasmic transport. In this study, we found that importin α3 (also known as karyopherin subunit alpha 4) can control pain responsiveness in peripheral sensory neurons in mice. Importin α3 knockout or sensory neuron-specific knockdown in mice reduced responsiveness to diverse noxious stimuli and increased tolerance to neuropathic pain. Importin α3-bound c-Fos and importin α3-deficient neurons were impaired in c-Fos nuclear import. Knockdown or dominant-negative inhibition of c-Fos or c-Jun in sensory neurons reduced neuropathic pain. In silico screens identified drugs that mimic importin α3 deficiency. These drugs attenuated neuropathic pain and reduced c-Fos nuclear localization. Thus, perturbing c-Fos nuclear import by importin α3 in peripheral neurons can promote analgesia.


Asunto(s)
Dolor Crónico/fisiopatología , Neuralgia/fisiopatología , Células Receptoras Sensoriales/fisiología , alfa Carioferinas/fisiología , Transporte Activo de Núcleo Celular , Animales , Benzofenonas/farmacología , Dolor Crónico/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Isoxazoles/farmacología , Ratones , Ratones Endogámicos C57BL , Neuralgia/genética , Proteínas Proto-Oncogénicas c-fos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factor de Transcripción AP-1/metabolismo , alfa Carioferinas/genética
3.
Cell Rep ; 25(11): 3169-3179.e7, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30540948

RESUMEN

Importins mediate transport from synapse to soma and from cytoplasm to nucleus, suggesting that perturbation of importin-dependent pathways should have significant neuronal consequences. A behavioral screen on five importin α knockout lines revealed that reduced expression of importin α5 (KPNA1) in hippocampal neurons specifically decreases anxiety in mice. Re-expression of importin α5 in ventral hippocampus of knockout animals increased anxiety behaviors to wild-type levels. Hippocampal neurons lacking importin α5 reveal changes in presynaptic plasticity and modified expression of MeCP2-regulated genes, including sphingosine kinase 1 (Sphk1). Knockout of importin α5, but not importin α3 or α4, reduces MeCP2 nuclear localization in hippocampal neurons. A Sphk1 blocker reverses anxiolysis in the importin α5 knockout mouse, while pharmacological activation of sphingosine signaling has robust anxiolytic effects in wild-type animals. Thus, importin α5 influences sphingosine-sensitive anxiety pathways by regulating MeCP2 nuclear import in hippocampal neurons.


Asunto(s)
Ansiedad/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , alfa Carioferinas/metabolismo , Animales , Ansiolíticos/farmacología , Conducta Animal , Carbolinas/farmacología , Hipocampo/patología , Ratones Noqueados , Neuronas/metabolismo , Fenotipo , Sinapsis/metabolismo , Transcripción Genética , alfa Carioferinas/deficiencia
4.
J Neurosci Methods ; 270: 9-16, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27269190

RESUMEN

BACKGROUND: Behavioral analyses in rodents have successfully delineated the function of many genes and signaling pathways in the brain. Behavioral testing uses highly defined experimental conditions to identify abnormalities in a given mouse strain or genotype. The open field (OF) is widely used to assess both locomotion and anxiety in rodents. In this test, the more a mouse explores and spend time in the center of the arena, the less anxious it is considered to be. However, the simplistic distinction between center and border substantially reduces the information content of the analysis and may fail to detect biologically meaningful differences. NEW METHOD: Here we describe COLORcation, a new application for improved analyses of mouse behavior in the OF. RESULTS: The application analyses animal exploration patterns in detailed spatial resolution (e.g. 10×10 bins) to provide a color-encoded heat map of mouse activity. In addition, COLORcation provides new parameters to track activity and locomotion of the test animals. We demonstrate the use of COLORcation in different experimental paradigms, including pharmacological and restraint-based induction of stress and anxiety. COMPARISON WITH EXISTING METHOD(S): COLORcation is compatible with multiple acquisition systems, giving users the option to make the most of their raw data organized text files containing time and coordinates of animal locations as input. CONCLUSION: These analyses validate the utility of the software and establish its reliability and potential as a new tool to analyze OF data.


Asunto(s)
Algoritmos , Ansiedad , Conducta Exploratoria , Análisis de Varianza , Animales , Ansiedad/fisiopatología , Carbolinas , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Actividad Motora , Fenotipo , Restricción Física , Programas Informáticos , Estrés Psicológico
5.
Dev Neurobiol ; 76(6): 688-701, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26446277

RESUMEN

PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries.


Asunto(s)
Axones/metabolismo , Regulación de la Expresión Génica/fisiología , Regeneración Nerviosa/fisiología , Neuronas/patología , PPAR gamma/metabolismo , Neuropatía Ciática/patología , Anilidas/farmacología , Animales , Axones/efectos de los fármacos , Axotomía , Células Cultivadas , Embrión de Mamíferos , Ganglios Espinales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Neurofilamentos/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley
6.
Neuron ; 75(2): 294-305, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22841314

RESUMEN

Subcellular localization of mRNA enables compartmentalized regulation within large cells. Neurons are the longest known cells; however, so far, evidence is lacking for an essential role of endogenous mRNA localization in axons. Localized upregulation of Importin ß1 in lesioned axons coordinates a retrograde injury-signaling complex transported to the neuronal cell body. Here we show that a long 3' untranslated region (3' UTR) directs axonal localization of Importin ß1. Conditional targeting of this 3' UTR region in mice causes subcellular loss of Importin ß1 mRNA and protein in axons, without affecting cell body levels or nuclear functions in sensory neurons. Strikingly, axonal knockout of Importin ß1 attenuates cell body transcriptional responses to nerve injury and delays functional recovery in vivo. Thus, localized translation of Importin ß1 mRNA enables separation of cytoplasmic and nuclear transport functions of importins and is required for efficient retrograde signaling in injured axons.


Asunto(s)
Transporte Axonal/genética , Axones/metabolismo , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , beta Carioferinas/metabolismo , Regiones no Traducidas 3' , Animales , Masculino , Ratones , Ratones Noqueados , Actividad Motora/genética , Traumatismos de los Nervios Periféricos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Recuperación de la Función/genética , Nervio Ciático/lesiones , Transducción de Señal/genética , beta Carioferinas/genética
7.
Sci Signal ; 3(130): ra53, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20628157

RESUMEN

Retrograde signaling from axon to soma activates intrinsic regeneration mechanisms in lesioned peripheral sensory neurons; however, the links between axonal injury signaling and the cell body response are not well understood. Here, we used phosphoproteomics and microarrays to implicate approximately 900 phosphoproteins in retrograde injury signaling in rat sciatic nerve axons in vivo and approximately 4500 transcripts in the in vivo response to injury in the dorsal root ganglia. Computational analyses of these data sets identified approximately 400 redundant axonal signaling networks connected to 39 transcription factors implicated in the sensory neuron response to axonal injury. Experimental perturbation of individual overrepresented signaling hub proteins, including Abl, AKT, p38, and protein kinase C, affected neurite outgrowth in sensory neurons. Paradoxically, however, combined perturbation of Abl together with other hub proteins had a reduced effect relative to perturbation of individual proteins. Our data indicate that nerve injury responses are controlled by multiple regulatory components, and suggest that network redundancies provide robustness to the injury response.


Asunto(s)
Redes Reguladoras de Genes/fisiología , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Degeneración Retrógrada , Transducción de Señal/fisiología , Animales , Ganglios Espinales/lesiones , Neuritas , Neuronas/metabolismo , Neuronas/patología , Fosfoproteínas/análisis , Proteómica/métodos , ARN Mensajero/análisis , Ratas , Nervio Ciático/lesiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA