Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nucleic Acids Res ; 50(2): 962-974, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35037018

RESUMEN

We report the properties of two mutations in the exonuclease domain of the Saccharomyces cerevisiae DNA polymerase ϵ. One, pol2-Y473F, increases the mutation rate by about 20-fold, similar to the catalytically dead pol2-D290A/E290A mutant. The other, pol2-N378K, is a stronger mutator. Both retain the ability to excise a nucleotide from double-stranded DNA, but with impaired activity. pol2-Y473F degrades DNA poorly, while pol2-N378K degrades single-stranded DNA at an elevated rate relative to double-stranded DNA. These data suggest that pol2-Y473F reduces the capacity of the enzyme to perform catalysis in the exonuclease active site, while pol2-N378K impairs partitioning to the exonuclease active site. Relative to wild-type Pol ϵ, both variants decrease the dNTP concentration required to elicit a switch between proofreading and polymerization by more than an order of magnitude. While neither mutation appears to alter the sequence specificity of polymerization, the N378K mutation stimulates polymerase activity, increasing the probability of incorporation and extension of a mismatch. Considered together, these data indicate that impairing the primer strand transfer pathway required for proofreading increases the probability of common mutations by Pol ϵ, elucidating the association of homologous mutations in human DNA polymerase ϵ with cancer.


Asunto(s)
ADN Polimerasa II/metabolismo , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Replicación del ADN , Mutación , Tasa de Mutación
2.
Nucleic Acids Res ; 49(10): 5623-5636, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34019669

RESUMEN

Iron-sulfur clusters (4Fe-4S) exist in many enzymes concerned with DNA replication and repair. The contribution of these clusters to enzymatic activity is not fully understood. We identified the MET18 (MMS19) gene of Saccharomyces cerevisiae as a strong mutator on GC-rich genes. Met18p is required for the efficient insertion of iron-sulfur clusters into various proteins. met18 mutants have an elevated rate of deletions between short flanking repeats, consistent with increased DNA polymerase slippage. This phenotype is very similar to that observed in mutants of POL3 (encoding the catalytic subunit of Pol Î´) that weaken binding of the iron-sulfur cluster. Comparable mutants of POL2 (Pol ϵ) do not elevate deletions. Further support for the conclusion that met18 strains result in impaired DNA synthesis by Pol Î´ are the observations that Pol Î´ isolated from met18 strains has less bound iron and is less processive in vitro than the wild-type holoenzyme.


Asunto(s)
ADN Polimerasa III/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Dominio Catalítico , ADN Polimerasa Dirigida por ADN/metabolismo , Unión Proteica
3.
Gastroenterology ; 156(1): 145-159.e19, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30273559

RESUMEN

BACKGROUND & AIMS: RNase H2 is a holoenzyme, composed of 3 subunits (ribonuclease H2 subunits A, B, and C), that cleaves RNA:DNA hybrids and removes mis-incorporated ribonucleotides from genomic DNA through ribonucleotide excision repair. Ribonucleotide incorporation by eukaryotic DNA polymerases occurs during every round of genome duplication and produces the most frequent type of naturally occurring DNA lesion. We investigated whether intestinal epithelial proliferation requires RNase H2 function and whether RNase H2 activity is disrupted during intestinal carcinogenesis. METHODS: We generated mice with epithelial-specific deletion of ribonuclease H2 subunit B (H2bΔIEC) and mice that also had deletion of tumor-suppressor protein p53 (H2b/p53ΔIEC); we compared phenotypes with those of littermate H2bfl/fl or H2b/p53fl/fl (control) mice at young and old ages. Intestinal tissues were collected and analyzed by histology. We isolated epithelial cells, generated intestinal organoids, and performed RNA sequence analyses. Mutation signatures of spontaneous tumors from H2b/p53ΔIEC mice were characterized by exome sequencing. We collected colorectal tumor specimens from 467 patients, measured levels of ribonuclease H2 subunit B, and associated these with patient survival times and transcriptome data. RESULTS: The H2bΔIEC mice had DNA damage to intestinal epithelial cells and proliferative exhaustion of the intestinal stem cell compartment compared with controls and H2b/p53ΔIEC mice. However, H2b/p53ΔIEC mice spontaneously developed small intestine and colon carcinomas. DNA from these tumors contained T>G base substitutions at GTG trinucleotides. Analyses of transcriptomes of human colorectal tumors associated lower levels of RNase H2 with shorter survival times. CONCLUSIONS: In analyses of mice with disruption of the ribonuclease H2 subunit B gene and colorectal tumors from patients, we provide evidence that RNase H2 functions as a colorectal tumor suppressor. H2b/p53ΔIEC mice can be used to study the roles of RNase H2 in tissue-specific carcinogenesis.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Células Epiteliales/enzimología , Inestabilidad Genómica , Neoplasias Intestinales/prevención & control , Intestino Delgado/enzimología , Ribonucleasa H/metabolismo , Animales , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Colitis/inducido químicamente , Colitis/enzimología , Colitis/genética , Colitis/patología , Daño del ADN , Sulfato de Dextran , Modelos Animales de Enfermedad , Células Epiteliales/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Intestinales/enzimología , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Intestino Delgado/patología , Masculino , Ratones Noqueados , Fenotipo , Ribonucleasa H/deficiencia , Ribonucleasa H/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
4.
J Biol Chem ; 291(12): 6456-70, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26797125

RESUMEN

Replicative DNA polymerases (DNAPs) require divalent metal cations for phosphodiester bond formation in the polymerase site and for hydrolytic editing in the exonuclease site. Me(2+) ions are intimate architectural components of each active site, where they are coordinated by a conserved set of amino acids and functional groups of the reaction substrates. Therefore Me(2+) ions can influence the noncovalent transitions that occur during each nucleotide addition cycle. Using a nanopore, transitions in individual Φ29 DNAP complexes are resolved with single-nucleotide spatial precision and sub-millisecond temporal resolution. We studied Mg(2+) and Mn(2+), which support catalysis, and Ca(2+), which supports deoxynucleoside triphosphate (dNTP) binding but not catalysis. We examined their effects on translocation, dNTP binding, and primer strand transfer between the polymerase and exonuclease sites. All three metals cause a concentration-dependent shift in the translocation equilibrium, predominantly by decreasing the forward translocation rate. Me(2+) also promotes an increase in the backward translocation rate that is dependent upon the primer terminal 3'-OH group. Me(2+) modulates the translocation rates but not their response to force, suggesting that Me(2+) does not affect the distance to the transition state of translocation. Absent Me(2+), the primer strand transfer pathway between the polymerase and exonuclease sites displays additional kinetic states not observed at >1 mm Me(2+). Complementary dNTP binding is affected by Me(2+) identity, with Ca(2+) affording the highest affinity, followed by Mn(2+), and then Mg(2+). Both Ca(2+) and Mn(2+) substantially decrease the dNTP dissociation rate relative to Mg(2+), while Ca(2+) also increases the dNTP association rate.


Asunto(s)
Cloruro de Calcio/química , Cloruros/química , ADN Polimerasa Dirigida por ADN/química , Cloruro de Magnesio/química , Compuestos de Manganeso/química , Proteínas Virales/química , Sustitución de Aminoácidos , Bacteriófagos/enzimología , Biocatálisis , Replicación del ADN , Desoxicitidina Monofosfato/química , Nucleótidos de Desoxiguanina/química , Cinética , Polimerizacion , Unión Proteica
5.
J Biol Chem ; 289(10): 6350-6361, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24464581

RESUMEN

The Φ29 DNA polymerase (DNAP) is a processive B-family replicative DNAP. Fluctuations between the pre-translocation and post-translocation states can be quantified from ionic current traces, when individual Φ29 DNAP-DNA complexes are held atop a nanopore in an electric field. Based upon crystal structures of the Φ29 DNAP-DNA binary complex and the Φ29 DNAP-DNA-dNTP ternary complex, residues Tyr-226 and Tyr-390 in the polymerase active site were implicated in the structural basis of translocation. Here, we have examined the dynamics of translocation and substrate binding in complexes formed with the Y226F and Y390F mutants. The Y226F mutation diminished the forward and reverse rates of translocation, increased the affinity for dNTP in the post-translocation state by decreasing the dNTP dissociation rate, and increased the affinity for pyrophosphate in the pre-translocation state. The Y390F mutation significantly decreased the affinity for dNTP in the post-translocation state by decreasing the association rate ∼2-fold and increasing the dissociation rate ∼10-fold, implicating this as a mechanism by which this mutation impedes DNA synthesis. The Y390F dissociation rate increase is suppressed when complexes are examined in the presence of Mn(2+) rather than Mg(2+). The same effects of the Y226F or Y390F mutations were observed in the background of the D12A/D66A mutations, located in the exonuclease active site, ∼30 Å from the polymerase active site. Although translocation rates were unaffected in the D12A/D66A mutant, these exonuclease site mutations caused a decrease in the dNTP dissociation rate, suggesting that they perturb Φ29 DNAP interdomain architecture.


Asunto(s)
Fagos de Bacillus/enzimología , Dominio Catalítico , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Fagos de Bacillus/genética , Replicación del ADN/genética , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/genética , Mutación , Unión Proteica , Transporte de Proteínas , Especificidad por Sustrato
6.
Biochemistry ; 53(51): 8061-76, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25478721

RESUMEN

Ribonucleoside triphosphates (rNTPs) are frequently incorporated during DNA synthesis by replicative DNA polymerases (DNAPs), and once incorporated are not efficiently edited by the DNAP exonucleolytic function. We examined the kinetic mechanisms that govern selection of complementary deoxyribonucleoside triphosphates (dNTPs) over complementary rNTPs and that govern the probability of a complementary ribonucleotide at the primer terminus escaping exonucleolytic editing and becoming stably incorporated. We studied the quantitative responses of individual Φ29 DNAP complexes to ribonucleotides using a kinetic framework, based on our prior work, in which transfer of the primer strand from the polymerase to exonuclease site occurs prior to translocation, and translocation precedes dNTP binding. We determined transition rates between the pre-translocation and post-translocation states, between the polymerase and exonuclease sites, and for dNTP or rNTP binding, with single-nucleotide spatial precision and submillisecond temporal resolution, from ionic current time traces recorded when individual DNAP complexes are held atop a nanopore in an electric field. The predominant response to the presence of a ribonucleotide in Φ29 DNAP complexes before and after covalent incorporation is significant destabilization, relative to the presence of a deoxyribonucleotide. This destabilization is manifested in the post-translocation state prior to incorporation as a substantially higher rNTP dissociation rate and manifested in the pre-translocation state after incorporation as rate increases for both primer strand transfer to the exonuclease site and the forward translocation, with the probability of editing not directly increased. In the post-translocation state, the primer terminal 2'-OH group also destabilizes dNTP binding.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Fagos de Bacillus/enzimología , Fagos de Bacillus/genética , Cartilla de ADN/química , Cartilla de ADN/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Desoxirribonucleótidos/química , Desoxirribonucleótidos/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Nanoporos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética
7.
J Am Chem Soc ; 136(19): 7117-31, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24761828

RESUMEN

Exonucleolytic editing of incorrectly incorporated nucleotides by replicative DNA polymerases (DNAPs) plays an essential role in the fidelity of DNA replication. Editing requires that the primer strand of the DNA substrate be transferred between the DNAP polymerase and exonuclease sites, separated by a distance that is typically on the order of ~30 Å. Dynamic transitions between functional states can be quantified with single-nucleotide spatial precision and submillisecond temporal resolution from ionic current time traces recorded when individual DNAP complexes are held atop a nanoscale pore in an electric field. In this study, we have exploited this capability to determine the kinetic relationship between the translocation step and primer strand transfer between the polymerase and exonuclease sites in complexes formed between the replicative DNAP from bacteriophage Φ29 and DNA. We demonstrate that the pathway for primer strand transfer from the polymerase to exonuclease site initiates prior to the translocation step, while complexes are in the pre-translocation state. We developed a mathematical method to determine simultaneously the forward and reverse translocation rates and the rates of primer strand transfer in both directions between the polymerase and the exonuclease sites, and we have applied it to determine these rates for Φ29 DNAP complexes formed with a DNA substrate bearing a fully complementary primer-template duplex. This work provides a framework that will be extended to determine the kinetic mechanisms by which incorporation of noncomplementary nucleotides promotes primer strand transfer from the polymerase site to the exonuclease site.


Asunto(s)
Fagos de Bacillus/enzimología , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Fagos de Bacillus/química , Fagos de Bacillus/genética , Fagos de Bacillus/metabolismo , Secuencia de Bases , Dominio Catalítico , Replicación del ADN , ADN Viral/química , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Cinética , Mutación Puntual , Termodinámica
8.
J Biol Chem ; 287(16): 13407-21, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22378784

RESUMEN

Complexes of phi29 DNA polymerase and DNA fluctuate on the millisecond time scale between two ionic current amplitude states when captured atop the α-hemolysin nanopore in an applied field. The lower amplitude state is stabilized by complementary dNTP and thus corresponds to complexes in the post-translocation state. We have demonstrated that in the upper amplitude state, the DNA is displaced by a distance of one nucleotide from the post-translocation state. We propose that the upper amplitude state corresponds to complexes in the pre-translocation state. Force exerted on the template strand biases the complexes toward the pre-translocation state. Based on the results of voltage and dNTP titrations, we concluded through mathematical modeling that complementary dNTP binds only to the post-translocation state, and we estimated the binding affinity. The equilibrium between the two states is influenced by active site-proximal DNA sequences. Consistent with the assignment of the upper amplitude state as the pre-translocation state, a DNA substrate that favors the pre-translocation state in complexes on the nanopore is a superior substrate in bulk phase for pyrophosphorolysis. There is also a correlation between DNA sequences that bias complexes toward the pre-translocation state and the rate of exonucleolysis in bulk phase, suggesting that during DNA synthesis the pathway for transfer of the primer strand from the polymerase to exonuclease active site initiates in the pre-translocation state.


Asunto(s)
Fagos de Bacillus/enzimología , Fagos de Bacillus/genética , Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Nanoporos , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Dominio Catalítico/fisiología , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/síntesis química , Difosfatos/metabolismo , Activación Enzimática/fisiología , Exonucleasas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Secuencias Invertidas Repetidas/genética , Proteínas Motoras Moleculares/fisiología , Conformación de Ácido Nucleico
9.
J Am Chem Soc ; 135(24): 9149-55, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23705688

RESUMEN

Complexes formed between phi29 DNA polymerase (DNAP) and DNA fluctuate discretely between the pre-translocation and post-translocation states on the millisecond time scale. The translocation fluctuations can be observed in ionic current traces when individual complexes are captured atop the α-hemolysin nanopore in an electric field. The presence of complementary 2'-deoxynucleoside triphosphate (dNTP) shifts the equilibrium across the translocation step toward the post-translocation state. Here we have determined quantitatively the kinetic relationship between the phi29 DNAP translocation step and dNTP binding. We demonstrate that dNTP binds to phi29 DNAP-DNA complexes only after the transition from the pre-translocation state to the post-translocation state; dNTP binding rectifies the translocation but it does not directly drive the translocation. Based on the measured time traces of current amplitude, we developed a method for determining the forward and reverse translocation rates and the dNTP association and dissociation rates, individually at each dNTP concentration and each voltage. The translocation rates, and their response to force, match those determined for phi29 DNAP-DNA binary complexes and are unaffected by dNTP. The dNTP association and dissociation rates do not vary as a function of voltage, indicating that force does not distort the polymerase active site and that dNTP binding does not directly involve a displacement in the translocation direction. This combined experimental and theoretical approach and the results obtained provide a framework for separately evaluating the effects of biological variables on the translocation transitions and their effects on dNTP binding.


Asunto(s)
Fagos de Bacillus/enzimología , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos/metabolismo , Fagos de Bacillus/metabolismo , Secuencia de Bases , ADN/metabolismo , Cinética
10.
J Biol Chem ; 286(16): 14480-92, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21362617

RESUMEN

During each catalytic cycle, DNA polymerases select deoxyribonucleoside triphosphate (dNTP) substrates complementary to a templating base with high fidelity from a pool that includes noncomplementary dNTPs and both complementary and noncomplementary ribonucleoside triphosphates (rNTPs). The Klenow fragment of Escherichia coli DNA polymerase I (KF) achieves this through a series of conformational transitions that precede the chemical step of phosphodiester bond formation. Kinetic evidence from fluorescence and FRET experiments indicates that discrimination of the base and sugar moieties of the incoming nucleotide occurs in distinct, sequential steps during the selection pathway. Here we show that KF-DNA complexes formed with complementary rNTPs or with noncomplementary nucleotides can be distinguished on the basis of their properties when captured in an electric field atop the α-hemolysin nanopore. The average nanopore dwell time of KF-DNA complexes increased as a function of complementary rNTP concentration. The increase was less than that promoted by complementary dNTP, indicating that the rNTP complexes are more stable than KF-DNA binary complexes but less stable than KF-DNA-dNTP ternary complexes. KF-DNA-rNTP complexes could also be distinguished from KF-DNA-dNTP complexes on the basis of ionic current amplitude. In contrast to complementary rNTPs, noncomplementary dNTPs and rNTPs diminished the average nanopore dwell time of KF-DNA complexes in a concentration-dependent manner, suggesting that binding of a noncomplementary nucleotide keeps the KF-DNA complex in a less stable state. These results imply that nucleotide selection proceeds through a series of complexes of increasing stability in which substrates with the correct moiety promote the forward transitions.


Asunto(s)
ADN Polimerasa I/química , Nanoporos , Algoritmos , Biofisica/métodos , ADN/química , ADN Polimerasa I/metabolismo , Electrofisiología , Escherichia coli/enzimología , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Modelos Estadísticos , Nanotecnología/métodos , Nucleótidos/química , Oligonucleótidos/química , Unión Proteica , Especificidad por Sustrato
11.
J Am Chem Soc ; 134(45): 18816-23, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23101437

RESUMEN

Complexes formed between the bacteriophage phi29 DNA polymerase (DNAP) and DNA fluctuate between the pre-translocation and post-translocation states on the millisecond time scale. These fluctuations can be directly observed with single-nucleotide precision in real-time ionic current traces when individual complexes are captured atop the α-hemolysin nanopore in an applied electric field. We recently quantified the equilibrium across the translocation step as a function of applied force (voltage), active-site proximal DNA sequences, and the binding of complementary dNTP. To gain insight into the mechanism of this step in the DNAP catalytic cycle, in this study, we have examined the stochastic dynamics of the translocation step. The survival probability of complexes in each of the two states decayed at a single exponential rate, indicating that the observed fluctuations are between two discrete states. We used a robust mathematical formulation based on the autocorrelation function to extract the forward and reverse rates of the transitions between the pre-translocation state and the post-translocation state from ionic current traces of captured phi29 DNAP-DNA binary complexes. We evaluated each transition rate as a function of applied voltage to examine the energy landscape of the phi29 DNAP translocation step. The analysis reveals that active-site proximal DNA sequences influence the depth of the pre-translocation and post-translocation state energy wells and affect the location of the transition state along the direction of the translocation.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Termodinámica , Biocatálisis , ADN/química , ADN Polimerasa Dirigida por ADN/química
12.
Nat Struct Mol Biol ; 28(12): 1020-1028, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887558

RESUMEN

Accurate DNA replication of an undamaged template depends on polymerase selectivity for matched nucleotides, exonucleolytic proofreading of mismatches, and removal of remaining mismatches via DNA mismatch repair (MMR). DNA polymerases (Pols) δ and ε have 3'-5' exonucleases into which mismatches are partitioned for excision in cis (intrinsic proofreading). Here we provide strong evidence that Pol δ can extrinsically proofread mismatches made by itself and those made by Pol ε, independently of both Pol δ's polymerization activity and MMR. Extrinsic proofreading across the genome is remarkably efficient. We report, with unprecedented accuracy, in vivo contributions of nucleotide selectivity, proofreading, and MMR to the fidelity of DNA replication in Saccharomyces cerevisiae. We show that extrinsic proofreading by Pol δ improves and balances the fidelity of the two DNA strands. Together, we depict a comprehensive picture of how nucleotide selectivity, proofreading, and MMR cooperate to achieve high and symmetrical fidelity on the two strands.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , ADN Polimerasa III/metabolismo , ADN de Hongos/biosíntesis , Saccharomyces cerevisiae/genética , ADN Polimerasa II/metabolismo , Replicación del ADN/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Nat Nanotechnol ; 5(11): 798-806, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20871614

RESUMEN

Nanopores can be used to analyse DNA by monitoring ion currents as individual strands are captured and driven through the pore in single file by an applied voltage. Here, we show that serial replication of individual DNA templates can be achieved by DNA polymerases held at the α-haemolysin nanopore orifice. Replication is blocked in the bulk phase, and is initiated only after the DNA is captured by the nanopore. We used this method, in concert with active voltage control, to observe DNA replication catalysed by bacteriophage T7 DNA polymerase (T7DNAP) and by the Klenow fragment of DNA polymerase I (KF). T7DNAP advanced on a DNA template against an 80-mV load applied across the nanopore, and single nucleotide additions were measured on the millisecond timescale for hundreds of individual DNA molecules in series. Replication by KF was not observed when this enzyme was held on top of the nanopore orifice at an applied potential of 80 mV. Sequential nucleotide additions by KF were observed upon applying controlled voltage reversals.


Asunto(s)
Replicación del ADN , ADN/metabolismo , Electroforesis , Nanoporos , Nanotecnología/métodos , Proteínas Bacterianas , ADN/química , ADN Polimerasa I/química , ADN Polimerasa I/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Campos Electromagnéticos , Proteínas Hemolisinas/química , Modelos Moleculares , Oligonucleótidos/química , Oligonucleótidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA