Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Bacteriol ; 197(6): 1135-44, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25605305

RESUMEN

UNLABELLED: Thermus thermophilus is an extremely thermophilic bacterium that is widely used as a model thermophile, in large part due to its amenability to genetic manipulation. Here we describe a system for the introduction of genomic point mutations or deletions using a counterselectable marker consisting of a conditionally lethal mutant allele of pheS encoding the phenylalanyl-tRNA synthetase α-subunit. Mutant PheS with an A294G amino acid substitution renders cells sensitive to the phenylalanine analog p-chlorophenylalanine. Insertion of the mutant pheS allele via a linked kanamycin resistance gene into a chromosomal locus provides a gene replacement intermediate that can be removed by homologous recombination using p-chlorophenylalanine as a counterselective agent. This selection is suitable for the sequential introduction of multiple mutations to produce a final strain unmarked by an antibiotic resistance gene. We demonstrated the utility of this method by constructing strains bearing either a point mutation in or a precise deletion of the rrsB gene encoding 16S rRNA. We also used this selection to identify spontaneous, large-scale deletions in the pTT27 megaplasmid, apparently mediated by either of the T. thermophilus insertion elements ISTth7 and ISTth8. One such deletion removed 121 kb, including 118 genes, or over half of pTT27, including multiple sugar hydrolase genes, and facilitated the development of a plasmid-encoded reporter system based on ß-galactosidase. The ability to introduce mutations ranging from single base substitutions to large-scale deletions provides a potentially powerful tool for engineering the genome of T. thermophilus and possibly other thermophiles as well. IMPORTANCE: Thermus thermophilus is an extreme thermophile that has played an important part in the development of both biotechnology and basic biological research. Its suitability as a genetic model system is established by its natural competence for transformation, but the scarcity of genetic tools limits the kinds of manipulations that can currently be performed. We have developed a counterselectable marker that allows the introduction of unmarked deletions and point mutations into the T. thermophilus genome. We find that this marker can also be used to select large chromosomal deletions apparently resulting from aberrant transposition of endogenous insertion sequences. This system has the potential to advance the genetic manipulation of this important model organism.


Asunto(s)
ADN Bacteriano/genética , Ingeniería Genética , Genoma Bacteriano , Thermus thermophilus/genética , Alelos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fenclonina , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica , Marcadores Genéticos , Mutación , Plásmidos/clasificación , Plásmidos/genética , ARN Bacteriano , ARN Ribosómico 16S , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
2.
J Bacteriol ; 197(18): 2981-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26148717

RESUMEN

UNLABELLED: The bacterial ribosome and its associated translation factors are frequent targets of antibiotics, and antibiotic resistance mutations have been found in a number of these components. Such mutations can potentially interact with one another in unpredictable ways, including the phenotypic suppression of one mutation by another. These phenotypic interactions can provide evidence of long-range functional interactions throughout the ribosome and its functional complexes and potentially give insights into antibiotic resistance mechanisms. In this study, we used genetics and experimental evolution of the thermophilic bacterium Thermus thermophilus to examine the ability of mutations in various components of the protein synthesis apparatus to suppress the streptomycin resistance phenotypes of mutations in ribosomal protein S12, specifically those located distant from the streptomycin binding site. With genetic selections and strain constructions, we identified suppressor mutations in EF-Tu or in ribosomal protein L11. Using experimental evolution, we identified amino acid substitutions in EF-Tu or in ribosomal proteins S4, S5, L14, or L19, some of which were found to also relieve streptomycin resistance. The wide dispersal of these mutations is consistent with long-range functional interactions among components of the translational machinery and indicates that streptomycin resistance can result from the modulation of long-range conformational signals. IMPORTANCE: The thermophilic bacterium Thermus thermophilus has become a model system for high-resolution structural studies of macromolecular complexes, such as the ribosome, while its natural competence for transformation facilitates genetic approaches. Genetic studies of T. thermophilus ribosomes can take advantage of existing high-resolution crystallographic information to allow a structural interpretation of phenotypic interactions among mutations. Using a combination of genetic selections, strain constructions, and experimental evolution, we find that certain mutations in the translation apparatus can suppress the phenotype of certain antibiotic resistance mutations. Suppression of resistance can occur by mutations located distant in the ribosome or in a translation factor. These observations suggest the existence of long-range conformational signals in the translating ribosome, particularly during the decoding of mRNA.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Estreptomicina/farmacología , Thermus thermophilus/efectos de los fármacos , Thermus thermophilus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía , Farmacorresistencia Bacteriana , Modelos Moleculares , Mutación , Ácidos Nicotínicos , Conformación Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas , Selección Genética , Thermus thermophilus/genética
3.
RNA ; 19(12): 1791-801, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24152548

RESUMEN

The ribosome decodes mRNA by monitoring the geometry of codon-anticodon base-pairing using a set of universally conserved 16S rRNA nucleotides within the conformationally dynamic decoding site. By applying single-molecule FRET and X-ray crystallography, we have determined that conditional-lethal, streptomycin-dependence mutations in ribosomal protein S12 interfere with tRNA selection by allowing conformational distortions of the decoding site that impair GTPase activation of EF-Tu during the tRNA selection process. Distortions in the decoding site are reversed by streptomycin or by a second-site suppressor mutation in 16S rRNA. These observations encourage a refinement of the current model for decoding, wherein ribosomal protein S12 and the decoding site collaborate to optimize codon recognition and substrate discrimination during the early stages of the tRNA selection process.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Ribosómicas/química , Thermus thermophilus/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli , Modelos Moleculares , Conformación de Ácido Nucleico , Mutación Puntual , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , ARN de Transferencia de Fenilalanina/química , Proteínas Ribosómicas/genética , Ribosomas/química
4.
Extremophiles ; 19(1): 221-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24948436

RESUMEN

Thermus thermophilus is an extremely thermophilic bacterium that grows between 50 and 80 °C and is an excellent model organism not only for understanding life at high temperature but also for its biotechnological and industrial applications. Multiple molecular capabilities are available including targeted gene inactivation and the use of shuttle plasmids that replicate in T. thermophilus and Escherichia coli; however, the ability to disrupt gene function randomly by transposon insertion has not been developed. Here we report a detailed method of transposon mutagenesis of T. thermophilus HB27 based on the EZ-Tn5 system from Epicentre Biotechnologies. We were able to generate insertion mutations throughout the chromosome by in vitro transposition and transformation with mutagenized genomic DNA. We also report that an additional step, one that fills in single stranded gaps in donor DNA generated by the transposition reaction, was essential for successful mutagenesis. We anticipate that our method of transposon mutagenesis will enable further genetic development of T. thermophilus and may also be valuable for similar endeavors with other under-developed organisms.


Asunto(s)
Elementos Transponibles de ADN/genética , Mutagénesis , Thermus thermophilus/genética , Arginina/química , Secuencia de Bases , Clonación Molecular , ADN Bacteriano/genética , Escherichia coli/genética , Fermentación , Ingeniería Genética/métodos , Plásmidos , Ácido Pirúvico/química
5.
J Bacteriol ; 196(21): 3776-83, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25157075

RESUMEN

During protein synthesis, the ribosome undergoes conformational transitions between functional states, requiring communication between distant structural elements of the ribosome. Despite advances in ribosome structural biology, identifying the protein and rRNA residues governing these transitions remains a significant challenge. Such residues can potentially be identified genetically, given the predicted deleterious effects of mutations stabilizing the ribosome in discrete conformations and the expected ameliorating effects of second-site compensatory mutations. In this study, we employed genetic selections and experimental evolution to identify interacting mutations in the ribosome of the thermophilic bacterium Thermus thermophilus. By direct genetic selections, we identified mutations in 16S rRNA conferring a streptomycin dependence phenotype and from these derived second-site suppressor mutations relieving dependence. Using experimental evolution of streptomycin-independent pseudorevertants, we identified additional compensating mutations. Similar mutations could be evolved from slow-growing streptomycin-resistant mutants. While some mutations arose close to the site of the original mutation in the three-dimensional structure of the 30S ribosomal subunit and probably act directly by compensating for local structural distortions, the locations of others are consistent with long-range communication between specific structural elements within the ribosome.


Asunto(s)
Evolución Molecular Dirigida , Regulación Bacteriana de la Expresión Génica/fisiología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Selección Genética , Thermus thermophilus/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Thermus thermophilus/genética
6.
Antimicrob Agents Chemother ; 58(8): 4308-17, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24820088

RESUMEN

Streptomycin is a bactericidal antibiotic that induces translational errors. It binds to the 30S ribosomal subunit, interacting with ribosomal protein S12 and with 16S rRNA through contacts with the phosphodiester backbone. To explore the structural basis for streptomycin resistance, we determined the X-ray crystal structures of 30S ribosomal subunits from six streptomycin-resistant mutants of Thermus thermophilus both in the apo form and in complex with streptomycin. Base substitutions at highly conserved residues in the central pseudoknot of 16S rRNA produce novel hydrogen-bonding and base-stacking interactions. These rearrangements in secondary structure produce only minor adjustments in the three-dimensional fold of the pseudoknot. These results illustrate how antibiotic resistance can occur as a result of small changes in binding site conformation.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Mutación Puntual , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Antibacterianos/química , Antibacterianos/farmacología , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico 16S/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Estreptomicina/química , Estreptomicina/farmacología , Thermus thermophilus/química , Thermus thermophilus/efectos de los fármacos , Thermus thermophilus/genética
7.
Mol Microbiol ; 85(6): 1194-203, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22779429

RESUMEN

The binding site of the cyclic peptide antibiotics capreomycin and viomycin is located on the ribosomal subunit interface close to nucleotides C1409 in 16S rRNA and C1920 in 23S rRNA. In Mycobacterium tuberculosis, the 2'-hydroxyls of both nucleotides are methylated by the enzyme TlyA. Loss of these methylations through inactivation of TlyA confers resistance to capreomycin and viomycin. We report here that TlyA orthologues occur in diverse bacteria and fall into two distinct groups. One group, now termed TlyA(I) , has shorter N- and C-termini and methylates only C1920; the second group (now TlyA(II) ) includes the mycobacterial enzyme, and these longer orthologues methylate at both C1409 and C1920. Ribosomal subunits are the preferred substrates for both groups of orthologues. Amino acid substitutions at the N-terminus of TlyA(II) reduce its ability to methylate these substrates. Growing pairs of recombinant TlyA(II) Escherichia coli strains in competition shows that even subtle changes in the level of rRNA methylation lead to significant differences in susceptibility to sub-inhibitory concentrations of capreomycin. The findings reveal that 2'-O-methyls at both C1409 and C1920 play a role in facilitating the inhibitory effects of capreomycin and viomycin on the bacterial ribosome.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Capreomicina/farmacología , ARN Ribosómico/metabolismo , ARNt Metiltransferasas/metabolismo , Proteínas Bacterianas/genética , Metilación , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación de Ácido Nucleico , Subunidades Ribosómicas/metabolismo , Viomicina/farmacología , ARNt Metiltransferasas/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-23989164

RESUMEN

High-resolution ribosome structures determined by X-ray crystallography have provided important insights into the mechanism of translation. Such studies have thus far relied on large ribosome crystals kept at cryogenic temperatures to reduce radiation damage. Here, the application of serial femtosecond X-ray crystallography (SFX) using an X-ray free-electron laser (XFEL) to obtain diffraction data from ribosome microcrystals in liquid suspension at ambient temperature is described. 30S ribosomal subunit microcrystals diffracted to beyond 6 Šresolution, demonstrating the feasibility of using SFX for ribosome structural studies. The ability to collect diffraction data at near-physiological temperatures promises to provide fundamental insights into the structural dynamics of the ribosome and its functional complexes.


Asunto(s)
Electrones , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Thermus thermophilus/química , Cristalización , Cristalografía por Rayos X , Rayos Láser , Subunidades Ribosómicas Pequeñas Bacterianas/química , Temperatura , Difracción de Rayos X
9.
RNA ; 16(12): 2319-24, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20962038

RESUMEN

All organisms incorporate post-transcriptional modifications into ribosomal RNA, influencing ribosome assembly and function in ways that are poorly understood. The most highly conserved modification is the dimethylation of two adenosines near the 3' end of the small subunit rRNA. Lack of these methylations due to deficiency in the KsgA methyltransferase stimulates translational errors during both the initiation and elongation phases of protein synthesis and confers resistance to the antibiotic kasugamycin. Here, we present the X-ray crystal structure of the Thermus thermophilus 30S ribosomal subunit lacking these dimethylations. Our data indicate that the KsgA-directed methylations facilitate structural rearrangements in order to establish a functionally optimum subunit conformation during the final stages of ribosome assembly.


Asunto(s)
Metiltransferasas/metabolismo , ARN Ribosómico 16S/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Ribosomas/fisiología , Secuencia de Bases , Cristalografía por Rayos X , Metilación , Metiltransferasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación de Ácido Nucleico , Conformación Proteica , ARN Ribosómico 16S/química , ARN Ribosómico 16S/fisiología , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/fisiología , Ribosomas/química , Ribosomas/metabolismo , Relación Estructura-Actividad , Thermus thermophilus/química , Thermus thermophilus/metabolismo , Thermus thermophilus/fisiología
10.
RNA ; 15(2): 215-23, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19144908

RESUMEN

Characterization of base substitutions in rRNAs has provided important insights into the mechanism of protein synthesis. Knowledge of the structural effects of such alterations is limited, and could be greatly expanded with the development of a genetic system based on an organism amenable to both genetics and structural biology. Here, we describe the genetic analysis of base substitutions in 16S ribosomal RNA of the extreme thermophile Thermus thermophilus, and an analysis of the conformational effects of these substitutions by structure probing with base-specific modifying agents. Gene replacement methods were used to construct a derivative of strain HB8 carrying a single 16S rRNA gene, allowing the isolation of spontaneous streptomycin-resistant mutants and subsequent genetic mapping of mutations by recombination. The residues altered to give streptomycin resistance reside within the central pseudoknot structure of 16S rRNA comprised of helices 1 and 27, and participate in the U13-U20-A915 base triple, the G21-A914 type II sheared G-A base pair, or the G885-C912 Watson-Crick base pair closing helix 27. Substitutions at any of the three residues engaged in the base triple were found to confer resistance. Results from structure probing of the pseudoknot are consistent with perturbation of RNA conformation by these substitutions, potentially explaining their streptomycin-resistance phenotypes.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Conformación de Ácido Nucleico , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Thermus thermophilus/genética , Sustitución de Aminoácidos , Secuencia de Bases , Técnicas de Inactivación de Genes , Mutación , Biosíntesis de Proteínas/genética , ARN Bacteriano/química , ARN Ribosómico 16S/química , Proteínas Ribosómicas/genética , Análisis de Secuencia de ARN , Estreptomicina/farmacología , Thermus thermophilus/efectos de los fármacos
11.
RNA ; 15(2): 208-14, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19095621

RESUMEN

Codon recognition by aminoacyl-tRNA on the ribosome triggers a process leading to GTP hydrolysis by elongation factor Tu (EF-Tu) and release of aminoacyl-tRNA into the A site of the ribosome. The nature of this signal is largely unknown. Here, we present genetic evidence that a specific set of direct interactions between ribosomal protein S12 and aminoacyl-tRNA, together with contacts between S12 and 16S rRNA, provide a pathway for the signaling of codon recognition to EF-Tu. Three novel amino acid substitutions, H76R, R37C, and K53E in Thermus thermophilus ribosomal protein S12, confer resistance to streptomycin. The streptomycin-resistance phenotypes of H76R, R37C, and K53E are all abolished by the mutation A375T in EF-Tu. A375T confers resistance to kirromycin, an antibiotic freezing EF-Tu in a GTPase activated state. H76 contacts aminoacyl-tRNA in ternary complex with EF-Tu and GTP, while R37 and K53 are involved in the conformational transition of the 30S subunit occurring upon codon recognition. We propose that codon recognition and domain closure of the 30S subunit are signaled through aminoacyl-tRNA to EF-Tu via these S12 residues.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Thermus thermophilus/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Codón/genética , Codón/metabolismo , Farmacorresistencia Bacteriana/genética , Factor Tu de Elongación Peptídica/genética , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Conformación Proteica , Piridonas/farmacología , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Estreptomicina/farmacología , Thermus thermophilus/genética
12.
RNA ; 15(9): 1693-704, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19622680

RESUMEN

The RsmG methyltransferase is responsible for N(7) methylation of G527 of 16S rRNA in bacteria. Here, we report the identification of the Thermus thermophilus rsmG gene, the isolation of rsmG mutants, and the solution of RsmG X-ray crystal structures at up to 1.5 A resolution. Like their counterparts in other species, T. thermophilus rsmG mutants are weakly resistant to the aminoglycoside antibiotic streptomycin. Growth competition experiments indicate a physiological cost to loss of RsmG activity, consistent with the conservation of the modification site in the decoding region of the ribosome. In contrast to Escherichia coli RsmG, which has been reported to recognize only intact 30S subunits, T. thermophilus RsmG shows no in vitro methylation activity against native 30S subunits, only low activity with 30S subunits at low magnesium concentration, and maximum activity with deproteinized 16S rRNA. Cofactor-bound crystal structures of RsmG reveal a positively charged surface area remote from the active site that binds an adenosine monophosphate molecule. We conclude that an early assembly intermediate is the most likely candidate for the biological substrate of RsmG.


Asunto(s)
ARN Ribosómico 16S/metabolismo , Thermus thermophilus/enzimología , ARNt Metiltransferasas/química , ARNt Metiltransferasas/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , Farmacorresistencia Bacteriana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Conformación de Ácido Nucleico , Organismos Modificados Genéticamente , Fenotipo , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Homología de Secuencia de Aminoácido , Estreptomicina/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/aislamiento & purificación , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
13.
Nat Struct Mol Biol ; 13(10): 879-86, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16998486

RESUMEN

The prokaryotic ribosome is an important target of antibiotic action. We determined the X-ray structure of the aminoglycoside kasugamycin (Ksg) in complex with the Escherichia coli 70S ribosome at 3.5-A resolution. The structure reveals that the drug binds within the messenger RNA channel of the 30S subunit between the universally conserved G926 and A794 nucleotides in 16S ribosomal RNA, which are sites of Ksg resistance. To our surprise, Ksg resistance mutations do not inhibit binding of the drug to the ribosome. The present structural and biochemical results indicate that inhibition by Ksg and Ksg resistance are closely linked to the structure of the mRNA at the junction of the peptidyl-tRNA and exit-tRNA sites (P and E sites).


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Escherichia coli/química , Biosíntesis de Proteínas , ARN Bacteriano/química , ARN Mensajero/química , Aminoglicósidos/química , Aminoglicósidos/metabolismo , Antibacterianos/química , Secuencia de Bases , Sitios de Unión , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Ribosomas/genética , Ribosomas/metabolismo , Relación Estructura-Actividad , Moldes Genéticos
14.
RNA ; 14(11): 2314-8, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18824514

RESUMEN

Throughout evolution, emerging organisms survived by adapting existing biochemical processes to new reaction conditions. Simple protein enzymes balanced changes in structural stability with changes that permitted optimal catalysis by adjustments in both entropic and enthalpic contributions to the free energy of activation for the reaction. Study of adaptive mechanisms by large multicomponent enzymes such as the ribosome has been largely unexplored. Here we have determined the kinetic and thermodynamic parameters of peptidyltransferase in ribosomes from the extreme thermophile Thermus thermophilus. Activity of thermophilic enzymes can be assayed over a wide range of temperatures, enabling one to measure accurate catalytic rates and determine enthalpic and entropic contributions to the free energy of activation of the reaction. Differences in the reaction conditions used here and in published studies on mesophilic ribosomes prevent direct comparison, but our data on Thermus ribosomes suggest that these ribosomes have adapted to changing environments using the same strategies as simple protein enzymes, balancing stability and flexibility without loss of catalytic rate. This strategy must be a very ancient process, perhaps first used by primitive ribosomes in the RNA World.


Asunto(s)
Proteínas Bacterianas/química , Peptidil Transferasas/química , Ribosomas/enzimología , Thermus thermophilus/enzimología , Catálisis , Entropía , Calor , Péptidos/química , ARN de Transferencia de Metionina/química , Ribosomas/química
15.
Structure ; 16(7): 1059-66, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18611379

RESUMEN

Ribosomal protein L11 is a universally conserved component of the large subunit, and plays a significant role during initiation, elongation, and termination of protein synthesis. In Escherichia coli, the lysine methyltransferase PrmA trimethylates the N-terminal alpha-amino group and the epsilon-amino groups of Lys3 and Lys39. Here, we report four PrmA-L11 complex structures in different orientations with respect to the PrmA active site. Two structures capture the L11 N-terminal alpha-amino group in the active site in a trimethylated post-catalytic state and in a dimethylated state with bound S-adenosyl-L-homocysteine. Two other structures show L11 in a catalytic orientation to modify Lys39 and in a noncatalytic orientation. The comparison of complex structures in different orientations with a minimal substrate recognition complex shows that the binding mode remains conserved in all L11 orientations, and that substrate orientation is brought about by the unusual interdomain flexibility of PrmA.


Asunto(s)
Proteínas Bacterianas/química , Proteína Metiltransferasas/química , Proteínas Ribosómicas/química , Sitios de Unión , Metilación , Modelos Moleculares , Conformación Proteica , S-Adenosilhomocisteína/química , Thermus thermophilus/enzimología
16.
mSphere ; 5(3)2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404512

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS coronavirus 2, or SARS-CoV-2) is the cause of the respiratory infection known as COVID-19. From an immunopathological standpoint, coronaviruses such as SARS-CoV-2 induce increased levels of a variety of T-helper 1 (Th1) and inflammatory cytokines and chemokines, including interleukin-1 (IL-1), IL-6, CCL2 protein, and CXCL10 protein. In the absence of proven antiviral agents or an effective vaccine, substances with immunomodulatory activity may be able to inhibit inflammatory and Th1 cytokines and/or yield an anti-inflammatory and/or Th2 immune response to counteract COVID-19 symptoms and severity. This report briefly describes the following four unconventional but commercially accessible immunomodulatory agents that can be employed in clinical trials to evaluate their effectiveness at alleviating disease symptoms and severity: low-dose oral interferon alpha, microdose DNA, low-dose thimerosal, and phytocannabinoids.


Asunto(s)
Cannabinoides/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , ADN/uso terapéutico , Inmunomodulación , Interferón-alfa/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Timerosal/uso terapéutico , Betacoronavirus , COVID-19 , Citocinas/inmunología , Humanos , Pandemias , Fitoquímicos/uso terapéutico , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
17.
Mol Microbiol ; 70(6): 1368-77, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18976282

RESUMEN

Bacterial translation initiation factor IF1 is homologous to archaeal aIF1A and eukaryal eIF1A, which form a complex with their homologous IF2-like factors (aIF5B and eIF5B respectively) during initiation of protein synthesis. A similar IF1-IF2 interaction is assumed to occur in all bacteria and supported by cross-linking data and stabilization of the 30S-IF2 interaction by IF1. Here we compare Escherichia coli IF1 with thermophilic factors from Bacillus stearothermophilus and Thermus thermophilus. All three IF1s are structurally similar and functionally interchangeable in vivo and in vitro. However, the thermophilic factors do not stimulate ribosomal binding of IF2DeltaN, regardless of 30S subunits and IF2 origin. We conclude that an IF1-IF2 interaction is not universally conserved and is not essential for cell survival.


Asunto(s)
Escherichia coli/metabolismo , Geobacillus stearothermophilus/metabolismo , Factor 1 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Thermus thermophilus/metabolismo , Escherichia coli/genética , Prueba de Complementación Genética , Geobacillus stearothermophilus/genética , Factor 1 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/genética , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Thermus thermophilus/genética
18.
J Bacteriol ; 190(23): 7754-61, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18805973

RESUMEN

Translocation during the elongation phase of protein synthesis involves the relative movement of the 30S and 50S ribosomal subunits. This movement is the target of tuberactinomycin antibiotics. Here, we describe the isolation and characterization of mutants of Thermus thermophilus selected for resistance to the tuberactinomycin antibiotic capreomycin. Two base substitutions, A1913U and mU1915G, and a single base deletion, DeltamU1915, were identified in helix 69 of 23S rRNA, a structural element that forms part of an interribosomal subunit bridge with the decoding center of 16S rRNA, the site of previously reported capreomycin resistance base substitutions. Capreomycin resistance in other bacteria has been shown to result from inactivation of the TlyA methyltransferase which 2'-O methylates C1920 of 23S rRNA. Inactivation of the tlyA gene in T. thermophilus does not affect its sensitivity to capreomycin. Finally, none of the mutations in helix 69 interferes with methylation at C1920 or with pseudouridylation at positions 1911 and 1917. We conclude that the resistance phenotype is a consequence of structural changes introduced by the mutations.


Asunto(s)
Antibacterianos/farmacología , Capreomicina/farmacología , Farmacorresistencia Bacteriana/genética , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico 23S/metabolismo , Thermus thermophilus/efectos de los fármacos , Secuencia de Bases , Secuencia Conservada , Silenciador del Gen , Metilación , Mutación , Conformación de Ácido Nucleico , Operón , Fenotipo , ARN Ribosómico 23S/genética , Thermus thermophilus/metabolismo
19.
FEMS Microbiol Lett ; 289(2): 187-92, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19016874

RESUMEN

We have identified an active insertion sequence (IS) in the genome of Thermus thermophilus HB8. Transposition was detected as insertional inactivation of a 16S rRNA methyltransferase gene, rsmG, resulting in streptomycin resistance. The IS element, ISTth7, is 1029 bp in length, encodes an imperfect 12 bp inverted repeat, and produces a 9 bp direct repeat of the target sequence. The sequence of a putative transposase encoded by ISTth7 indicates that it is a member of the IS427 group within the IS5 family of ISs. Nine intact copies and several partial copies were identified throughout the chromosome and the megaplasmid pTT27. ISTth7 was also detected in T. thermophilus strain IB-21 and Thermus igniterrae but not Thermus antranikianii, suggesting a widespread occurrence of ISTth7 among Thermus spp.


Asunto(s)
Elementos Transponibles de ADN , Genoma Bacteriano , Thermus thermophilus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Metiltransferasas/genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Temperatura , Thermus thermophilus/metabolismo
20.
Nucleic Acids Res ; 32(19): 5954-61, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15534366

RESUMEN

Ribosomes from the extreme thermophile Thermus thermophilus are capable of translation in a coupled transcription-translation system derived from Escherichia coli. At 45 degrees C, T.thermophilus ribosomes translate at approximately 25-30% of the maximal rate of E.coli ribosomes, and synthesize full-length protein. T.thermophilus and E.coli subunits can be combined to effect translation, with the spectrum of proteins produced depending upon the source of the 30S subunit. In this system, T.thermophilus ribosomes function in concert with E.coli translational factors and tRNAs, with elongation and release factors being supplied from the E.coli extract, and purified initiation factors (IFs) being added exogenously. Cloned and purified T.thermophilus IF1, IF2 and IF3 supported the synthesis of the same products in vitro as the E.coli factors, although the relative levels of some polypeptides were factor dependent. We conclude that, at least between these two phylogenetically distant species, translational factor function and subunit-subunit interactions are conserved. This functional compatibility is remarkable given the extreme and highly divergent environments to which these species have adapted.


Asunto(s)
Escherichia coli/genética , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/genética , Thermus thermophilus/genética , Transcripción Genética , Evolución Molecular , Ribosomas/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA