Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(3): 255-266, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29476183

RESUMEN

Key events in T cell-dependent antibody responses, including affinity maturation, are dependent on the B cell's presentation of antigen to helper T cells at critical checkpoints in germinal-center formation in secondary lymphoid organs. Here we found that signaling via Toll-like receptor 9 (TLR9) blocked the ability of antigen-specific B cells to capture, process and present antigen and to activate antigen-specific helper T cells in vitro. In a mouse model in vivo and in a human clinical trial, the TLR9 agonist CpG enhanced the magnitude of the antibody response to a protein vaccine but failed to promote affinity maturation. Thus, TLR9 signaling might enhance antibody titers at the expense of the ability of B cells to engage in germinal-center events that are highly dependent on B cells' capture and presentation of antigen.


Asunto(s)
Formación de Anticuerpos/inmunología , Presentación de Antígeno/genética , Activación de Linfocitos/inmunología , Receptor Toll-Like 9/inmunología , Animales , Afinidad de Anticuerpos , Centro Germinal/inmunología , Humanos , Vacunas contra la Malaria , Ratones , Receptor Toll-Like 9/agonistas
2.
Nat Immunol ; 19(8): 871-884, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988090

RESUMEN

B cells are activated by two temporally distinct signals, the first provided by the binding of antigen to the B cell antigen receptor (BCR), and the second provided by helper T cells. Here we found that B cells responded to antigen by rapidly increasing their metabolic activity, including both oxidative phosphorylation and glycolysis. In the absence of a second signal, B cells progressively lost mitochondrial function and glycolytic capacity, which led to apoptosis. Mitochondrial dysfunction was a result of the gradual accumulation of intracellular calcium through calcium response-activated calcium channels that, for approximately 9 h after the binding of B cell antigens, was preventable by either helper T cells or signaling via the receptor TLR9. Thus, BCR signaling seems to activate a metabolic program that imposes a limited time frame during which B cells either receive a second signal and survive or are eliminated.


Asunto(s)
Linfocitos B/fisiología , Mitocondrias/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Receptor Toll-Like 9/metabolismo , Animales , Apoptosis , Calcio/metabolismo , Canales de Calcio/metabolismo , Citocinas/metabolismo , Glucólisis , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células 3T3 NIH , Fosforilación Oxidativa , Receptores de Antígenos de Linfocitos B/genética , Transducción de Señal , Receptor Toll-Like 9/genética
3.
J Infect Dis ; 228(7): 936-943, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37243712

RESUMEN

Mass drug administration programs targeting filarial infections depend on diagnostic tools that are sensitive and specific. The coendemicity of Loa loa with other filarial species often hampers the control programs. LL2634 was identified as the most promising target among several highly repeated targets, with sensitivity between 500 ag and 1 fg of genomic DNA. Using DNA from infected individuals, LL2643 quantitative polymerase chain reaction (qPCR) was positive in all individuals. LL2643 was detected in plasma-derived circulating cell-free DNA (ccfDNA) from 48 of 53 microfilariae-positive patients. Detection of ccfDNA in urine was possible, but it occurred rarely among those tested. Importantly, LL2643 ccfDNA became undetectable within 1 month following diethylcarbamazine (DEC) treatment and remained negative for at least a year. LL2643 offers a more sensitive and specific target for detection of L. loa infection and would be easily configurable to a point-of-contact assay. Clinical Trials Registration. NCT00001230 and NCT00090662.


Asunto(s)
Loiasis , Animales , Humanos , Loiasis/diagnóstico , Técnicas de Amplificación de Ácido Nucleico , Dietilcarbamazina , Loa/genética , ADN
4.
Clin Infect Dis ; 73(7): e1594-e1600, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33252651

RESUMEN

BACKGROUND: Angiostrongylus cantonensis (Ac), or the rat lungworm, is a major cause of eosinophilic meningitis. Humans are infected by ingesting the 3rd stage larvae from primary hosts, snails, and slugs, or paratenic hosts. The currently used molecular test is a qPCR assay targeting the ITS1 rDNA region (ITS1) of Ac. METHODS: In silico design of a more sensitive qPCR assay was performed based on tandem repeats predicted to be the most abundant by the RepeatExplorer algorithm. Genomic DNA (gDNA) of Ac were used to determine the analytical sensitivity and specificity of the best primer/probe combination. This assay was then applied to clinical and environmental samples. RESULTS: The limit of detection of the best performing assay, AcanR3990, was 1 fg (the DNA equivalent of 1/100 000 dilution of a single 3rd stage larvae). Out of 127 CDC archived CSF samples from varied geographic locations, the AcanR3990 qPCR detected the presence of Ac in 49/49 ITS1 confirmed angiostrongyliasis patients, along with 15/73 samples previously negative by ITS1 qPCR despite strong clinical suspicion for angiostrongyliasis. Intermediate hosts (gastropods) and an accidental host, a symptomatic horse, were also tested with similar improvement in detection observed. AcanR3990 qPCR did not cross-react in 5 CSF from patients with proven neurocysticercosis, toxocariasis, gnathostomiasis, and baylisascariasis. AcanR3990 qPCR failed to amplify genomic DNA from the other related Angiostrongylus species tested except for Angiostrongylus mackerrasae (Am), a neurotropic species limited to Australia that would be expected to present with a clinical syndrome indistinguishable from Ac. CONCLUSION: These results suggest AcanR3990 qPCR assay is highly sensitive and specific with potential wide applicability as a One Health detection method for Ac and Am.


Asunto(s)
Angiostrongylus cantonensis , Angiostrongylus , Meningitis , Infecciones por Strongylida , Angiostrongylus cantonensis/genética , Animales , Caballos , Humanos , Ratas , Infecciones por Strongylida/diagnóstico
5.
Clin Infect Dis ; 70(9): 1875-1881, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31232448

RESUMEN

BACKGROUND: Treatment of subarachnoid neurocysticercosis (NCC) is complicated, and assays that can guide treatment are not widely available. The reproducibility and scalability of molecular-based biomarkers would be of great use. METHODS: The Taenia solium genome was mined and primers and probes were designed to target repeats with the highest coverage; the most sensitive, specific, and efficient repeat (TsolR13) was selected for clinical testing. We tested 46 plasma samples and 36 cerebral spinal fluid (CSF) samples taken from patients with subarachnoid or ventricular disease using quantitative polymerase chain reaction (qPCR). RESULTS: The analytic sensitivity of TsolR13 was 97.3% at 240 attograms (ag) of T. solium genomic DNA and 100% analytic specificity. The clinical sensitivity in detecting active subarachnoid or ventricular disease in symptomatic patients was 100% in CSF and 81.3% in plasma. The predictive ability to distinguish active from cured disease was better for CSF (94.4% of those cured had negative qPCR results) than for plasma (86.7% of those cured tested negative). Some subjects also had plasma DNA detectable intermittently for years after being cured. Overall, the test performance was equivalent to T. solium antigen detection. CONCLUSIONS: A qPCR test for the detection of the highly repetitive Tsol13 sequence has been developed and shown to be highly sensitive and specific for NCC, but also useful as a test of cure in CSF and for the definitive diagnosis of NCC in plasma.


Asunto(s)
Neurocisticercosis , Taenia solium , Animales , Antígenos Helmínticos , Ensayo de Inmunoadsorción Enzimática , Humanos , Neurocisticercosis/diagnóstico , Neurocisticercosis/tratamiento farmacológico , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Taenia solium/genética
6.
PLoS Pathog ; 14(4): e1006985, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29672594

RESUMEN

Regulatory T cells (Tregs) play a cardinal role in the immune system by suppressing detrimental autoimmune responses, but their role in acute, chronic infectious diseases and tumor microenvironment remains unclear. We recently demonstrated that IFN-α/ß receptor (IFNAR) signaling promotes Treg function in autoimmunity. Here we dissected the functional role of IFNAR-signaling in Tregs using Treg-specific IFNAR deficient (IFNARfl/flxFoxp3YFP-Cre) mice in acute LCMV Armstrong, chronic Clone-13 viral infection, and in tumor models. In both viral infection and tumor models, IFNARfl/flxFoxp3YFP-Cre mice Tregs expressed enhanced Treg associated activation antigens. LCMV-specific CD8+ T cells and tumor infiltrating lymphocytes from IFNARfl/flxFoxp3YFP-Cre mice produced less antiviral and antitumor IFN-γ and TNF-α. In chronic viral model, the numbers of antiviral effector and memory CD8+ T cells were decreased in IFNARfl/flxFoxp3YFP-Cre mice and the effector CD4+ and CD8+ T cells exhibited a phenotype compatible with enhanced exhaustion. IFNARfl/flxFoxp3YFP-Cre mice cleared Armstrong infection normally, but had higher viral titers in sera, kidneys and lungs during chronic infection, and higher tumor burden than the WT controls. The enhanced activated phenotype was evident through transcriptome analysis of IFNARfl/flxFoxp3YFP-Cre mice Tregs during infection demonstrated differential expression of a unique gene signature characterized by elevated levels of genes involved in suppression and decreased levels of genes mediating apoptosis. Thus, IFN signaling in Tregs is beneficial to host resulting in a more effective antiviral response and augmented antitumor immunity.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Neoplasias del Colon/inmunología , Interferón Tipo I/farmacología , Coriomeningitis Linfocítica/inmunología , Melanoma Experimental/inmunología , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología , Animales , Antivirales/farmacología , Infecciones por Arenaviridae/tratamiento farmacológico , Infecciones por Arenaviridae/metabolismo , Infecciones por Arenaviridae/virología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/virología , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Interferón gamma/metabolismo , Coriomeningitis Linfocítica/tratamiento farmacológico , Coriomeningitis Linfocítica/metabolismo , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/fisiología , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/virología , Microambiente Tumoral/efectos de los fármacos
7.
J Autoimmun ; 115: 102525, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32709481

RESUMEN

Interferon-ß has therapeutic efficacy in Multiple Sclerosis by reducing disease exacerbations and delaying relapses. Previous studies have suggested that the effects of type I IFN in Experimental Autoimmune Encephalomyelitis (EAE) in mice were targeted to myeloid cells. We used mice with a conditional deletion (cKO) of the type I IFN receptor (IFNAR) in T regulatory (Treg) cells to dissect the role of IFN signaling on Tregs. cKO mice developed severe EAE with an earlier onset than control mice. Although Treg cells from cKO mice were more activated, the activation status and effector cytokine production of CD4+Foxp3- T cells in the draining lymph nodes (dLN) was similar in WT and cKO mice during the priming phase. Production of chemokines (CCL8, CCL9, CCL22) by CD4+Foxp3- T cells and LN resident cells from cKO mice was suppressed. Suppression of chemokine production was accompanied by a substantial reduction of myeloid derived suppressor cells (MDSCs) in the dLN of cKO mice, while generation of MDSCs and recruitment to peripheral organs was comparable. This study demonstrates that signaling by type I IFNs in Tregs reduces their capacity to suppress chemokine production, with resultant alteration of the entire microenvironment of draining lymph nodes leading to enhancement of MDSC homing, and beneficial effects on disease outcome.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Interferón Tipo I/metabolismo , Esclerosis Múltiple/inmunología , Células Supresoras de Origen Mieloide/inmunología , Linfocitos T Reguladores/inmunología , Animales , Quimiocina CCL22/metabolismo , Quimiocina CCL8/metabolismo , Quimiocinas CC/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Humanos , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Proteínas Inflamatorias de Macrófagos/metabolismo , Ratones , Ratones Noqueados , Esclerosis Múltiple/patología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/metabolismo
8.
J Neurovirol ; 24(1): 75-87, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29147886

RESUMEN

Powassan virus (POWV) is a tick-borne Flavivirus responsible for life-threatening encephalitis in North America and some regions of Russia. The ticks that have been reported to transmit the virus belong to the Ixodes species, and they feed on small-to-medium-sized mammals, such as Peromyscus leucopus mice, skunks, and woodchucks. We previously developed a P. leucopus mouse model of POWV infection, and the model is characterized by a lack of clinical signs of disease following intraperitoneal or intracranial inoculation. However, intracranial inoculation results in mild subclinical encephalitis from 5 days post infection (dpi), but the encephalitis resolves by 28 dpi. We used RNA sequencing to profile the P. leucopus mouse brain transcriptome at different time points after intracranial challenge with POWV. At 24 h post infection, 42 genes were significantly differentially expressed and the number peaked to 232 at 7 dpi before declining to 31 at 28 dpi. Using Ingenuity Pathway Analysis, we determined that the genes that were significantly expressed from 1 to 15 dpi were mainly associated with interferon signaling. As a result, many interferon-stimulated genes (ISGs) were upregulated. Some of the ISGs include an array of TRIMs (genes encoding tripartite motif proteins). These results will be useful for the identification of POWV restriction factors.


Asunto(s)
Encéfalo/virología , Encefalitis Transmitida por Garrapatas/genética , Factores Reguladores del Interferón/genética , Peromyscus/virología , Transcriptoma , Proteínas de Motivos Tripartitos/genética , Animales , Modelos Animales de Enfermedad , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Encefalitis Transmitida por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/virología , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inyecciones Intraventriculares , Factores Reguladores del Interferón/inmunología , Ixodes/virología , Peromyscus/genética , Peromyscus/inmunología , Transducción de Señal , Proteínas de Motivos Tripartitos/inmunología
9.
Proc Natl Acad Sci U S A ; 111(19): 7114-9, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24778254

RESUMEN

The pathophysiology of hantavirus pulmonary syndrome (HPS) remains unclear because of a lack of surrogate disease models with which to perform pathogenesis studies. Nonhuman primates (NHP) are considered the gold standard model for studying the underlying immune activation/suppression associated with immunopathogenic viruses such as hantaviruses; however, to date an NHP model for HPS has not been described. Here we show that rhesus macaques infected with Sin Nombre virus (SNV), the primary etiological agent of HPS in North America, propagated in deer mice develop HPS, which is characterized by thrombocytopenia, leukocytosis, and rapid onset of respiratory distress caused by severe interstitial pneumonia. Despite establishing a systemic infection, SNV differentially activated host responses exclusively in the pulmonary endothelium, potentially the mechanism leading to acute severe respiratory distress. This study presents a unique chronological characterization of SNV infection and provides mechanistic data into the pathophysiology of HPS in a closely related surrogate animal model. We anticipate this model will advance our understanding of HPS pathogenesis and will greatly facilitate research toward the development of effective therapeutics and vaccines against hantaviral diseases.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome Pulmonar por Hantavirus/fisiopatología , Macaca mulatta/virología , Enfermedades de los Monos/virología , Peromyscus/virología , Virus Sin Nombre/genética , Animales , Chlorocebus aethiops , Síndrome Pulmonar por Hantavirus/diagnóstico por imagen , Síndrome Pulmonar por Hantavirus/transmisión , Pulmón/diagnóstico por imagen , Pulmón/virología , Datos de Secuencia Molecular , Enfermedades de los Monos/fisiopatología , Enfermedades de los Monos/transmisión , América del Norte , ARN Viral/genética , Radiografía , Células Vero , Viremia/fisiopatología
10.
J Virol ; 87(7): 3719-28, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23325688

RESUMEN

Bhanja virus (BHAV) and its antigenically close relatives Forecariah virus (FORV), Kismayo virus (KISV), and Palma virus (PALV) are thought to be members of the family Bunyaviridae, but they have not been assigned to a genus or species. Despite their broad geographical distribution and reports that BHAV causes sporadic cases of febrile illness and encephalitis in humans, the public health importance of the Bhanja serogroup viruses remains unclear, due in part to the lack of sequence and biochemical information for the virus proteins. In order to better define the molecular characteristics of this group, we determined the full-length sequences of the L, M, and S genome segments of multiple isolates of BHAV as well as FORV and PALV. The genome structures of these Bhanja viruses are similar to those of viruses belonging to the genus Phlebovirus. Functional domains and amino acid motifs in the viral proteins that are conserved among other known phleboviruses were also identified in proteins of the BHAV group. Phylogenetic and serological analyses revealed that the BHAVs are most closely related to the novel emerging tick-borne phleboviruses severe fever with thrombocytopenia syndrome virus and Heartland virus, which have recently been implicated as causing severe acute febrile illnesses associated with thrombocytopenia in humans in China and the United States. Our results indicate that the Bhanja serogroup viruses constitute a single novel species in the genus Phlebovirus. The results of this study should facilitate epidemiological surveillance for other, similar tick-borne phleboviruses that may represent unrecognized causes of febrile illness in humans.


Asunto(s)
Genoma Viral/genética , Phlebovirus/clasificación , Phlebovirus/genética , Filogenia , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Chlorocebus aethiops , Cartilla de ADN/genética , ADN Complementario/biosíntesis , Perros , Secuenciación de Nucleótidos de Alto Rendimiento , Funciones de Verosimilitud , Macrófagos , Microscopía Electrónica , Modelos Genéticos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Pruebas Serológicas , Especificidad de la Especie , Células Vero
11.
J Virol ; 86(24): 13844-5, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23166251

RESUMEN

Batai virus (BATV) is a widely distributed but poorly studied member of the Orthobunyavirus genus in the family Bunyaviridae and is of particular interest as a known participant in natural reassortment events. Both research and surveillance efforts on this and other related viruses have been hampered by the lack of available full-length sequence data covering all three genomic segments. Here, we report the complete genome sequence of four BATV strains (MM2222, Chittoor/IG-20217, UgMP-6830, and MS50) isolated from various geographical locations. Based on these data, we have determined that strain MS50 is in fact unrelated to BATV and likely represents as a novel genotype in the genus Orthobunyavirus.


Asunto(s)
Virus Bunyamwera/genética , Genoma Viral , Virus Bunyamwera/clasificación , Geografía , Datos de Secuencia Molecular , Especificidad de la Especie
12.
Front Immunol ; 12: 693074, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211479

RESUMEN

Immune reconstitution inflammatory syndrome (IRIS) is an inflammatory complication associated with an underlying opportunistic infection that can be observed in HIV-infected individuals shortly after the initiation of antiretroviral therapy, despite successful suppression of HIV viral load and CD4+ T cell recovery. Better understanding of IRIS pathogenesis would allow for targeted prevention and therapeutic approaches. In this study, we sought to evaluate the metabolic perturbations in IRIS across longitudinal time points using an unbiased plasma metabolomics approach as well as integrated analyses to include plasma inflammatory biomarker profile and whole blood transcriptome. We found that many lipid and amino acid metabolites differentiated IRIS from non-IRIS conditions prior to antiretroviral therapy and during the IRIS event, implicating the association between oxidative stress, tryptophan pathway, and lipid mediated signaling and the development of IRIS. Lipid and amino acid metabolic pathways also significantly correlated with inflammatory biomarkers such as IL-12p70 and IL-8 at the IRIS event, indicating the role of cellular metabolism on cell type specific immune activation during the IRIS episode and in turn the impact of immune activation on cellular metabolism. In conclusion, we defined the metabolic profile of IRIS and revealed that perturbations in metabolism may predispose HIV-infected individuals to IRIS development and contribute to the inflammatory manifestations during the IRIS event. Furthermore, our findings expanded our current understanding IRIS pathogenesis and highlighted the significance of lipid and amino acid metabolism in inflammatory complications.


Asunto(s)
Metabolismo Energético , Síndrome Inflamatorio de Reconstitución Inmune/sangre , Metaboloma , Metabolómica , Adulto , Biomarcadores/sangre , Femenino , VIH/inmunología , Interacciones Huésped-Patógeno , Humanos , Síndrome Inflamatorio de Reconstitución Inmune/inmunología , Síndrome Inflamatorio de Reconstitución Inmune/virología , Masculino , Estudios Prospectivos , Factores de Tiempo
13.
Front Immunol ; 12: 752782, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938286

RESUMEN

Low nadir CD4 T-cell counts in HIV+ patients are associated with high morbidity and mortality and lasting immune dysfunction, even after antiretroviral therapy (ART). The early events of immune recovery of T cells and B cells in severely lymphopenic HIV+ patients have not been fully characterized. In a cohort of lymphopenic (CD4 T-cell count < 100/µL) HIV+ patients, we studied mononuclear cells isolated from peripheral blood (PB) and lymph nodes (LN) pre-ART (n = 40) and 6-8 weeks post-ART (n = 30) with evaluation of cellular immunophenotypes; histology on LN sections; functionality of circulating T follicular helper (cTfh) cells; transcriptional and B-cell receptor profile on unfractionated LN and PB samples; and plasma biomarker measurements. A group of 19 healthy controls (HC, n = 19) was used as a comparator. T-cell and B-cell lymphopenia was present in PB pre-ART in HIV+ patients. CD4:CD8 and CD4 T- and B-cell PB subsets partly normalized compared to HC post-ART as viral load decreased. Strikingly in LN, ART led to a rapid decrease in interferon signaling pathways and an increase in Tfh, germinal center and IgD-CD27- B cells, consistent with histological findings of post-ART follicular hyperplasia. However, there was evidence of cTfh cells with decreased helper capacity and of limited B-cell receptor diversification post-ART. In conclusion, we found early signs of immune reconstitution, evidenced by a surge in LN germinal center cells, albeit limited in functionality, in HIV+ patients who initiate ART late in disease.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Fármacos Anti-VIH/uso terapéutico , Linfocitos B/inmunología , Centro Germinal/inmunología , Subgrupos Linfocitarios/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Viremia/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida/sangre , Síndrome de Inmunodeficiencia Adquirida/inmunología , Adulto , Fármacos Anti-VIH/farmacología , Anticuerpos Antivirales/sangre , Técnicas de Cocultivo , Femenino , Centro Germinal/patología , Hemoglobinas/análisis , Humanos , Hiperplasia , Ganglios Linfáticos/inmunología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos B/genética , Transcripción Genética , Carga Viral , Viremia/inmunología , Adulto Joven
14.
Elife ; 92020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33155980

RESUMEN

Human ascariasis is a major neglected tropical disease caused by the nematode Ascaris lumbricoides. We report a 296 megabase (Mb) reference-quality genome comprised of 17,902 protein-coding genes derived from a single, representative Ascaris worm. An additional 68 worms were collected from 60 human hosts in Kenyan villages where pig husbandry is rare. Notably, the majority of these worms (63/68) possessed mitochondrial genomes that clustered closer to the pig parasite Ascaris suum than to A. lumbricoides. Comparative phylogenomic analyses identified over 11 million nuclear-encoded SNPs but just two distinct genetic types that had recombined across the genomes analyzed. The nuclear genomes had extensive heterozygosity, and all samples existed as genetic mosaics with either A. suum-like or A. lumbricoides-like inheritance patterns supporting a highly interbred Ascaris species genetic complex. As no barriers appear to exist for anthroponotic transmission of these 'hybrid' worms, a one-health approach to control the spread of human ascariasis will be necessary.


Asunto(s)
Ascariasis/parasitología , Ascaris lumbricoides/genética , Ascaris suum/genética , Enfermedades de los Porcinos/parasitología , Animales , Ascariasis/veterinaria , Ascaris lumbricoides/patogenicidad , Ascaris suum/patogenicidad , Ciclooxigenasa 1/genética , Femenino , Genoma de los Helmintos/genética , Genoma Mitocondrial/genética , Heterocigoto , Humanos , Hibridación Genética/genética , Kenia , Masculino , Filogenia , Polimorfismo de Nucleótido Simple/genética , Proteoma/genética , Porcinos
15.
PLoS Negl Trop Dis ; 13(7): e0007593, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31329586

RESUMEN

BACKGROUND: With the expansion of soil transmitted helminth (STH) intervention efforts and the corresponding decline in infection prevalence, there is an increased need for sensitive and specific STH diagnostic assays. Previously, through next generation sequencing (NGS)-based identification and targeting of non-coding, high copy-number repetitive DNA sequences, we described the development of a panel of improved quantitative real-time PCR (qPCR)-based assays for the detection of Necator americanus, Ancylostoma duodenale, Ancylostoma ceylanicum, Trichuris trichiura, and Strongyloides stercoralis. However, due to the phenomenon of chromosome diminution, a similar assay based on high copy-number repetitive DNA was not developed for the detection of Ascaris lumbricoides. Recently, the publication of a reference-level germline genome sequence for A. lumbricoides has facilitated our development of an improved assay for this human pathogen of vast global importance. METHODOLOGY/PRINCIPAL FINDINGS: Repurposing raw DNA sequence reads from a previously published Illumina-generated, NGS-based A. lumbricoides germline genome sequencing project, we performed a cluster-based repeat analysis utilizing RepeatExplorer2 software. This analysis identified the most prevalent repetitive DNA element of the A. lumbricoides germline genome (AGR, Ascaris germline repeat), which was then used to develop an improved qPCR assay. During experimental validation, this assay demonstrated a fold increase in sensitivity of ~3,100, as determined by relative Cq values, when compared with an assay utilizing a previously published, frequently employed, ribosomal internal transcribed spacer (ITS) DNA target. A comparative analysis of 2,784 field-collected samples was then performed, successfully verifying this improved sensitivity. CONCLUSIONS/SIGNIFICANCE: Through analysis of the germline genome sequence of A. lumbricoides, a vastly improved qPCR assay has been developed. This assay, utilizing a high copy-number repeat target found in eggs and embryos (the AGR repeat), will improve prevalence estimates that are fundamental to the programmatic decision-making process, while simultaneously strengthening mathematical models used to examine STH infection rates. Furthermore, through the identification of an optimal target for PCR, future assay development efforts will also benefit, as the identity of the optimized repeat DNA target is likely to remain unchanged despite continued improvement in PCR-based diagnostic technologies.


Asunto(s)
Ascariasis/diagnóstico , Ascaris lumbricoides/genética , ADN de Helmintos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Ascariasis/parasitología , Ascaris lumbricoides/aislamiento & purificación , Variaciones en el Número de Copia de ADN , Heces/parasitología , Femenino , Células Germinativas , Humanos , Técnicas de Diagnóstico Molecular
16.
Viruses ; 8(9)2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27626437

RESUMEN

Tick-borne flaviviruses (TBFVs) cause a broad spectrum of disease manifestations ranging from asymptomatic to mild febrile illness and life threatening encephalitis. These single-stranded positive-sense (ss(+)) RNA viruses are naturally maintained in a persistent infection of ixodid ticks and small-medium sized mammals. The development of cell lines from the ixodid ticks has provided a valuable surrogate system for studying the biology of TBFVs in vitro. When we infected ISE6 cells, an Ixodes scapularis embryonic cell line, with Langat virus (LGTV) we observed that the infection proceeded directly into persistence without any cytopathic effect. Analysis of the viral genome at selected time points showed that no defective genomes were generated during LGTV persistence by 10 weeks of cell passage. This was in contrast to LGTV persistence in 293T cells in which defective viral genomes are detectable by five weeks of serial cell passage. We identified two synonymous nucleotide changes i.e., 1893A→C (29% of 5978 reads at 12 h post infection (hpi)) and 2284T→A (34% of 4191 reads at 12 hpi) in the region encoding for the viral protein E. These results suggested that the mechanisms supporting LGTV persistence are different between tick and mammalian cells.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/genética , Genoma Viral , Ixodes/virología , Animales , Línea Celular , Virus Defectuosos/genética , Mamíferos , Mutación Puntual , Pase Seriado , Garrapatas
17.
PLoS Negl Trop Dis ; 9(12): e0004316, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26697878

RESUMEN

BACKGROUND: Infections with Taenia solium are the most common cause of adult acquired seizures worldwide, and are the leading cause of epilepsy in developing countries. A better understanding of the genetic diversity of T. solium will improve parasite diagnostics and transmission pathways in endemic areas thereby facilitating the design of future control measures and interventions. Microsatellite markers are useful genome features, which enable strain typing and identification in complex pathogen genomes. Here we describe microsatellite identification and characterization in T. solium, providing information that will assist in global efforts to control this important pathogen. METHODS: For genome sequencing, T. solium cysts and proglottids were collected from Huancayo and Puno in Peru, respectively. Using next generation sequencing (NGS) and de novo assembly, we assembled two draft genomes and one hybrid genome. Microsatellite sequences were identified and 36 of them were selected for further analysis. Twenty T. solium isolates were collected from Tumbes in the northern region, and twenty from Puno in the southern region of Peru. The size-polymorphism of the selected microsatellites was determined with multi-capillary electrophoresis. We analyzed the association between microsatellite polymorphism and the geographic origin of the samples. RESULTS: The predicted size of the hybrid (proglottid genome combined with cyst genome) T. solium genome was 111 MB with a GC content of 42.54%. A total of 7,979 contigs (>1,000 nt) were obtained. We identified 9,129 microsatellites in the Puno-proglottid genome and 9,936 in the Huancayo-cyst genome, with 5 or more repeats, ranging from mono- to hexa-nucleotide. Seven microsatellites were polymorphic and 29 were monomorphic within the analyzed isolates. T. solium tapeworms were classified into two genetic groups that correlated with the North/South geographic origin of the parasites. CONCLUSIONS/SIGNIFICANCE: The availability of draft genomes for T. solium represents a significant step towards the understanding the biology of the parasite. We report here a set of T. solium polymorphic microsatellite markers that appear promising for genetic epidemiology studies.


Asunto(s)
Variación Genética , Genoma de los Helmintos/genética , Repeticiones de Microsatélite/genética , Taenia solium/genética , Teniasis/parasitología , Adulto , Animales , Secuencia de Bases , Mapeo Cromosómico , ADN de Helmintos/química , ADN de Helmintos/genética , Genotipo , Geografía , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Datos de Secuencia Molecular , Perú/epidemiología , Análisis de Secuencia de ADN , Taenia solium/aislamiento & purificación , Teniasis/epidemiología
18.
PLoS Negl Trop Dis ; 8(9): e3147, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25188437

RESUMEN

BACKGROUND: Human infection with Bwamba virus (BWAV) and the closely related Pongola virus (PGAV), as well as Nyando virus (NDV), are important causes of febrile illness in Africa. However, despite seroprevalence studies that indicate high rates of infection in many countries, these viruses remain relatively unknown and unstudied. In addition, a number of unclassified bunyaviruses have been isolated over the years often with uncertain relationships to human disease. METHODOLOGY/PRINCIPAL FINDINGS: In order to better understand the genetic and evolutionary relationships among orthobunyaviruses associated with human disease, we have sequenced the complete genomes for all 3 segments of multiple strains of BWAV (n = 2), PGAV (n = 2) and NDV (n = 4), as well as the previously unclassified Mojuí dos Campos (MDCV) and Kaeng Khoi viruses (KKV). Based on phylogenetic analysis, we show that these viruses populate 2 distinct branches, one made up of BWAV and PGAV and the other composed of NDV, MDCV and KKV. Interestingly, the NDV strains analyzed form two distinct clades which differed by >10% on the amino acid level across all protein products. In addition, the assignment of two bat-associated bunyaviruses into the NDV group, which is clearly associated with mosquito-borne infection, led us to analyze the ability of these different viruses to grow in bat (RE05 and Tb 1 Lu) and mosquito (C6/36) cell lines, and indeed all the viruses tested were capable of efficient growth in these cell types. CONCLUSIONS/SIGNIFICANCE: On the basis of our analyses, it is proposed to reclassify the NDV strains ERET147 and YM176-66 as a new virus species. Further, our analysis definitively identifies the previously unclassified bunyaviruses MDCV and KKV as distinct species within the NDV group and suggests that these viruses may have a broader host range than is currently appreciated.


Asunto(s)
Infecciones por Bunyaviridae/virología , Orthobunyavirus/clasificación , Orthobunyavirus/genética , Secuencia de Bases , Genoma Viral , Humanos , Datos de Secuencia Molecular
19.
PLoS One ; 8(8): e72550, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009690

RESUMEN

Spirochetes are bacteria characterized in part by rotating periplasmic flagella that impart their helical or flat-wave morphology and motility. While most other bacteria rely on a transcriptional cascade to regulate the expression of motility genes, spirochetes employ post-transcriptional mechanism(s) that are only partially known. In the present study, we characterize a spontaneous non-motile mutant of the relapsing fever spirochete Borrelia hermsii that was straight, non-motile and deficient in periplasmic flagella. We used next generation DNA sequencing of the mutant's genome, which when compared to the wild-type genome identified a 142 bp deletion in the chromosomal gene encoding the flagellar export apparatus protein FliH. Immunoblot and transcription analyses showed that the mutant phenotype was linked to the posttranscriptional deficiency in the synthesis of the major periplasmic flagellar filament core protein FlaB. Despite the lack of FlaB, the amount of FlaA produced by the fliH mutant was similar to the wild-type level. The turnover of the residual pool of FlaB produced by the fliH mutant was comparable to the wild-type spirochete. The non-motile mutant was not infectious in mice and its inoculation did not induce an antibody response. Trans-complementation of the mutant with an intact fliH gene restored the synthesis of FlaB, a normal morphology, motility and infectivity in mice. Therefore, we propose that the flagellar export apparatus protein regulates motility of B. hermsii at the post-transcriptional level by influencing the synthesis of FlaB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia/fisiología , Borrelia/patogenicidad , Flagelina/genética , Flagelina/metabolismo , Procesamiento Postranscripcional del ARN , Fiebre Recurrente/microbiología , Animales , Borrelia/ultraestructura , Modelos Animales de Enfermedad , Flagelos/metabolismo , Flagelos/ultraestructura , Regulación Bacteriana de la Expresión Génica , Orden Génico , Prueba de Complementación Genética , Genoma Bacteriano , Humanos , Ratones , Mutación , Sistemas de Lectura Abierta , Estabilidad Proteica , Transcripción Genética , Virulencia
20.
Genome Biol Evol ; 5(12): 2498-511, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24307482

RESUMEN

Giardia lamblia (syn G. intestinalis, G. duodenalis) is the most common pathogenic intestinal parasite of humans worldwide and is a frequent cause of endemic and epidemic diarrhea. G. lamblia is divided into eight genotypes (A-H) which infect a wide range of mammals and humans, but human infections are caused by Genotypes A and B. To unambiguously determine the relationship among genotypes, we sequenced GS and DH (Genotypes B and A2) to high depth coverage and compared the assemblies with the nearly completed WB genome and draft sequencing surveys of Genotypes E (P15; pig isolate) and B (GS; human isolate). Our results identified DH as the smallest Giardia genome sequenced to date, while GS is the largest. Our open reading frame analyses and phylogenetic analyses showed that GS was more distant from the other three genomes than any of the other three were from each other. Whole-genome comparisons of DH_A2 and GS_B with the optically mapped WB_A1 demonstrated substantial synteny across all five chromosomes but also included a number of rearrangements, inversions, and chromosomal translocations that were more common toward the chromosome ends. However, the WB_A1/GS_B alignment demonstrated only about 70% sequence identity across the syntenic regions. Our findings add to information presented in previous reports suggesting that GS is a different species of Giardia as supported by the degree of genomic diversity, coding capacity, heterozygosity, phylogenetic distance, and known biological differences from WB_A1 and other G. lamblia genotypes.


Asunto(s)
ADN Protozoario/genética , Genoma de Protozoos , Giardia lamblia/clasificación , Giardia lamblia/genética , Secuencia de Bases , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Biblioteca de Genes , Genotipo , Giardia lamblia/aislamiento & purificación , Giardiasis/genética , Giardiasis/parasitología , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA