Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 18(7): e0289003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37490504

RESUMEN

The genetically modified cotton DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 expressing Cry1Ac, Cry1F and Vip3Aa19 from Bacillus thuringiensis Berliner (Bt) has been cultivated in Brazil since the 2020/2021 season. Here, we assessed the performance of DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton expressing Cry1Ac, Cry1F and Vip3Aa19 against Helicoverpa armigera (Hübner), Helicoverpa zea (Boddie), and their hybrid progeny. We also carried out evaluations with DAS-21023-5 × DAS-24236-5 cotton containing Cry1Ac and Cry1F. In leaf-disk bioassays, DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 was effective in controlling neonates from laboratory colonies of H. armigera, H. zea and the hybrid progeny (71.9%-100% mortality). On floral bud bioassays using L2 larvae, H. zea presented complete mortality, whereas H. armigera and the hybrid progeny showed <55% mortality. On DAS-21023-5 × DAS-24236-5 cotton, the mortality of H. armigera on leaf-disk and floral buds ranged from 60% to 73%, whereas mortality of hybrids was <46%. This Bt cotton caused complete mortality of H. zea larvae from a laboratory colony in the early growth stages, but mortalities were <55% on advanced growth stages and on floral buds. In field studies conducted from 2014 to 2019, DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton was also effective at protecting plants against H. armigera. In contrast, a population of H. zea collected in western Bahia in 2021/2022 on Bt cotton expressing Cry1 and Vip3Aa proteins, showed 63% mortality after 30 d, with insects developing into fifth and sixth instars, on DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton. We conclude that H. armigera, H. zea, and their hybrid progeny can be managed with DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton; however we found the first evidence in Brazil of a significant reduction in the susceptibility to DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton of a population of H. zea collected from Bt cotton in Bahia in 2021/2022.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Humanos , Recién Nacido , Insecticidas/farmacología , Brasil , Zea mays/genética , Endotoxinas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Toxinas de Bacillus thuringiensis , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Mariposas Nocturnas/genética , Larva/genética , Gossypium/genética , Plantas Modificadas Genéticamente/genética
2.
PLoS One ; 16(5): e0251134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33945577

RESUMEN

The efficacy and non-target arthropod effects of transgenic DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 Bt cotton, expressing proteins Cry1Ac, Cry1F and Vip3Aa19, was examined through field trials in Brazil. Fifteen field efficacy experiments were conducted from 2014 through the 2020 growing season across six different states in Brazil to evaluate performance against key lepidopteran pests through artificial infestations of Chrysodeixis includens (Walker), Spodoptera frugiperda (J.E. Smith,1797), Spodoptera cosmioides (Walker, 1858) and Chloridea virescens (F., 1781), and natural infestations of Alabama argillacea (Hübner) and S. frugiperda. The impact of this Bt cotton technology on the non-target arthropod community in Brazilian cotton production systems was also assessed in a multi-site experiment. DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton significantly reduced the feeding damage caused by S. frugiperda, S. cosmioides, C. includens, C. virescens and A. argillacea, causing high levels of mortality (greater than 99%) to all target lepidopteran pests evaluated during vegetative and/or reproductive stages of crop development. Non-target arthropod community-level analyses confirmed no unintended effects on the arthropod groups monitored. These results demonstrate the value of transgenic Bt cotton containing event DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 for consideration as part of an integrated approach for managing key lepidopteran pests in Brazilian cotton production systems.


Asunto(s)
Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-disulfónico/análogos & derivados , Artrópodos/crecimiento & desarrollo , Gossypium/metabolismo , Gossypium/parasitología , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-disulfónico/metabolismo , Animales , Brasil , Control de Insectos , Larva/crecimiento & desarrollo , Mariposas Nocturnas/crecimiento & desarrollo , Control Biológico de Vectores/métodos , Hojas de la Planta/parasitología , Plantas Modificadas Genéticamente/parasitología , Spodoptera/crecimiento & desarrollo
3.
Sci Rep ; 10(1): 10080, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572133

RESUMEN

Spodoptera frugiperda is one of the main pests of maize and cotton in Brazil and has increased its occurrence on soybean. Field-evolved resistance of this species to Cry1 Bacillus thuringiensis (Bt) proteins expressed in maize has been characterized in Brazil, Argentina, Puerto Rico and southeastern U.S. Here, we conducted studies to evaluate the survival and development of S. frugiperda strains that are susceptible, selected for resistance to Bt-maize single (Cry1F) or pyramided (Cry1F/Cry1A.105/Cry2Ab2) events and F1 hybrids of the selected and susceptible strains (heterozygotes) on DAS-444Ø6-6 × DAS-81419-2 soybean with tolerance to 2,4-D, glyphosate and ammonium glufosinate herbicides (event DAS-444Ø6-6) and insect-resistant due to expression of Cry1Ac and Cry1F Bt proteins (event DAS-81419-2). Susceptible insects of S. frugiperda did not survive on Cry1Ac/Cry1F-soybean. However, homozygous-resistant and heterozygous insects were able to survive and emerge as fertile adults when fed on Cry1Ac/Cry1F-soybean, suggesting that the resistance is partially recessive. Life history studies revealed that homozygous-resistant insects had similar development, reproductive performance, net reproductive rate, intrinsic and finite rates of population increase on Cry1Ac/Cry1F-soybean and non-Bt soybean. In contrast, heterozygotes had their fertility life table parameters significantly reduced on Cry1Ac/Cry1F-soybean. Therefore, the selection of S. frugiperda for resistance to single and pyramided Bt maize can result in cross-crop resistance to DAS-444Ø6-6 × DAS-81419-2 soybean. The importance of these results to integrated pest management (IPM) and insect resistance management (IRM) programs is discussed.


Asunto(s)
Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Spodoptera/metabolismo , Zea mays/genética , Animales , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/metabolismo , Fenómenos Bioquímicos , Brasil , Resistencia a la Enfermedad/genética , Endotoxinas/metabolismo , Fabaceae/metabolismo , Hipersensibilidad a los Alimentos , Proteínas Hemolisinas/metabolismo , Resistencia a los Insecticidas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Glycine max/genética , Glycine max/metabolismo , Spodoptera/inmunología , Spodoptera/patogenicidad
4.
Pest Manag Sci ; 76(12): 4029-4035, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32520447

RESUMEN

BACKGROUND: Spodoptera eridania (Stoll), S. cosmioides (Walker) and S. albula (Walker) (Lepidoptera: Noctuidae) are considered secondary pests of soybean in South America. The genetically-modified soybean DAS-444Ø6-6 × DAS-81419-2 with tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D), glyphosate and ammonium glufosinate herbicides (event DAS-444Ø6-6) and insect-resistance due to expression of Cry1Ac and Cry1F Bt proteins (event DAS-81419-2) may provide a potential tool for integrated pest management (IPM) of these species in soybean fields. Based on this, we conducted bioassays to evaluate the survival and development of S. eridania, S. cosmioides and S. albula fed on Cry1Ac/Cry1F-soybean leaf tissue. RESULTS: Spodoptera eridania and S. cosmioides fed on Cry1Ac/Cry1F-soybean showed longer developmental time, lower larval and egg to adult survival compared to those fed on non-Bt soybean, reducing the population growth of these species. Spodoptera albula also had lower larval survival and number of insects that reached adulthood on Cry1Ac/Cry1F-soybean. However, no significant effects of Cry1Ac/Cry1F-soybean on population growth parameters were detected in this species. CONCLUSIONS: Soybean with stacked events DAS-444Ø6-6 × DAS-81419-2 expressing Cry1Ac/Cry1F Bt proteins provide population suppression of S. eridania and S. cosmioides. However, this Bt soybean had minimal effects on S. albula, and is unlikely to have negative population-level effects on this species. It is expected that under field conditions, other control tactics must be integrated with Cry1Ac/Cry1F-soybean for the management of these Spodoptera species. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Glycine max , Proteínas Hemolisinas , Animales , Proteínas Bacterianas/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Larva , Plantas Modificadas Genéticamente/genética , Glycine max/genética , Spodoptera/genética
5.
Pest Manag Sci ; 61(3): 246-57, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15627242

RESUMEN

Imidazolinone herbicides, which include imazapyr, imazapic, imazethapyr, imazamox, imazamethabenz and imazaquin, control weeds by inhibiting the enzyme acetohydroxyacid synthase (AHAS), also called acetolactate synthase (ALS). AHAS is a critical enzyme for the biosynthesis of branched-chain amino acids in plants. Several variant AHAS genes conferring imidazolinone tolerance were discovered in plants through mutagenesis and selection, and were used to create imidazolinone-tolerant maize (Zea mays L), wheat (Triticum aestivum L), rice (Oryza sativa L), oilseed rape (Brassica napus L) and sunflower (Helianthus annuus L). These crops were developed using conventional breeding methods and commercialized as Clearfield* crops from 1992 to the present. Imidazolinone herbicides control a broad spectrum of grass and broadleaf weeds in imidazolinone-tolerant crops, including weeds that are closely related to the crop itself and some key parasitic weeds. Imidazolinone-tolerant crops may also prevent rotational crop injury and injury caused by interaction between AHAS-inhibiting herbicides and insecticides. A single target-site mutation in the AHAS gene may confer tolerance to AHAS-inhibiting herbicides, so that it is technically possible to develop the imidazolinone-tolerance trait in many crops. Activities are currently directed toward the continued improvement of imidazolinone tolerance and development of new Clearfield* crops. Management of herbicide-resistant weeds and gene flow from crops to weeds are issues that must be considered with the development of any herbicide-resistant crop. Thus extensive stewardship programs have been developed to address these issues for Clearfield* crops.


Asunto(s)
Acetolactato Sintasa/genética , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/genética , Herbicidas/farmacología , Imidazoles/farmacología , Plantas Modificadas Genéticamente/enzimología , Acetolactato Sintasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Productos Agrícolas/enzimología , Resistencia a Medicamentos/fisiología , Herbicidas/química , Imidazoles/química , Datos de Secuencia Molecular , Estructura Molecular , Plantas Modificadas Genéticamente/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA