Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Transl Med ; 22(1): 720, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103842

RESUMEN

BACKGROUND: Fatigue is one of the most common neurological symptoms reported post coronavirus disease 2019 (COVID-19) infection. In order to establish effective early intervention strategies, more emphasis should be placed on the correlation between fatigue and cortical neurophysiological changes, especially in healthcare workers, who are at a heightened risk of COVID-19 infection. METHODS: A prospective cohort study was conducted involving 29 COVID-19 medical workers and 24 healthy controls. The assessment included fatigue, sleep and health quality, psychological status, and physical capacity. Functional near-infrared spectroscopy (fNIRS) was employed to detect activation of brain regions. Bilateral primary motor cortex (M1) excitabilities were measured using single- and paired-pulse transcranial magnetic stimulation. Outcomes were assessed at 1, 3, and 6 months into the disease course. RESULTS: At 1-month post-COVID-19 infection, 37.9% of patients experienced severe fatigue symptoms, dropping to 10.3% at 3 months. Interestingly, the remarkable decreased activation/excitability of bilateral prefrontal lobe (PFC) and M1 were closely linked to fatigue symptoms after COVID-19. Notably, greater increase in M1 region excitability correlated with more significant fatigue improvement. Re-infected patients exhibited lower levels of brain activation and excitability compared to single-infection patients. CONCLUSIONS: Both single infection and reinfection of COVID-19 lead to decreased activation and excitability of the PFC and M1. The degree of excitability improvement in the M1 region correlates with a greater recovery in fatigue. Based on these findings, targeted interventions to enhance and regulate the excitability of M1 may represent a novel strategy for COVID-19 early rehabilitation. TRIAL REGISTRATION: The Ethics Review Committee of Xijing Hospital, No. KY20232051-F-1; www.chictr.org.cn , ChiCTR2300068444.


Asunto(s)
COVID-19 , Fatiga , Personal de Salud , Corteza Motora , Corteza Prefrontal , Estimulación Magnética Transcraneal , Humanos , COVID-19/fisiopatología , Fatiga/fisiopatología , Masculino , Femenino , Estudios Longitudinales , Adulto , Corteza Prefrontal/fisiopatología , Corteza Prefrontal/diagnóstico por imagen , Corteza Motora/fisiopatología , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , Estudios Prospectivos , Espectroscopía Infrarroja Corta , Estudios de Cohortes
2.
BMC Neurol ; 24(1): 213, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909175

RESUMEN

BACKGROUND: After spinal cord injury (SCI), a large number of survivors suffer from severe motor dysfunction (MD). Although the injury site is in the spinal cord, excitability significantly decreases in the primary motor cortex (M1), especially in the lower extremity (LE) area. Unfortunately, M1 LE area-targeted repetitive transcranial magnetic stimulation (rTMS) has not achieved significant motor improvement in individuals with SCI. A recent study reported that the M1 hand area in individuals with SCl contains a compositional code (the movement-coding component of neural activity) that links matching movements from the upper extremities (UE) and the LE. However, the correlation between bilateral M1 hand area excitability and overall functional recovery is unknown. OBJECTIVE: To clarify the changes in the excitability of the bilateral M1 hand area after SCI and its correlation with motor recovery, we aim to specify the therapeutic parameters of rTMS for SCI motor rehabilitation. METHODS: This study is a 12-month prospective cohort study. The neurophysiological and overall functional status of the participants will be assessed. The primary outcomes included single-pulse and paired-pulse TMS. The second outcome included functional near-infrared spectroscopy (fNIRS) measurements. Overall functional status included total motor score, modified Ashworth scale score, ASIA Impairment Scale grade, spinal cord independence measure and modified Barthel index. The data will be recorded for individuals with SCI at disease durations of 1 month, 2 months, 4 months, 6 months and 12 months. The matched healthy controls will be measured during the same period of time after recruitment. DISCUSSION: The present study is the first to analyze the role of bilateral M1 hand area excitability changes in the evaluation and prediction of overall functional recovery (including motor function and activities of daily living) after SCI, which will further expand the traditional theory of the predominant role of M1, optimize the current rTMS treatment, and explore the brain-computer interface design for individuals with SCI. TRIAL REGISTRATION NUMBER: ChiCTR2300068831.


Asunto(s)
Mano , Corteza Motora , Recuperación de la Función , Traumatismos de la Médula Espinal , Estimulación Magnética Transcraneal , Humanos , Traumatismos de la Médula Espinal/rehabilitación , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Recuperación de la Función/fisiología , Mano/fisiopatología , Estimulación Magnética Transcraneal/métodos , Corteza Motora/fisiopatología , Estudios Prospectivos , Potenciales Evocados Motores/fisiología , Masculino , Adulto , Femenino , Estudios de Cohortes , Persona de Mediana Edad , Espectroscopía Infrarroja Corta/métodos
3.
J Bioenerg Biomembr ; 49(5): 413-422, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28975445

RESUMEN

P62, also called sequestosome1 (SQSTM1), is the selective cargo receptor for autophagy to degenerate misfolded proteins. It has also been found to assist and connect parkin in pink1/parkin mitophagy pathway. Previous studies showed that p62 was in association with neurodegenerative diseases, and one of the diseases pathogenesis is P62 induced autophagy and mitophagy dysfunction. Autophagy is an important process to eliminate misfolded proteins. Intracellular aggregation including α-synuclein, Huntingtin, tau protein and ß-amyloid (Aß) protein are the misfolded proteins found in PD, HD and AD, respectively. P62 induced autophagy failure significantly accelerates misfolded protein aggregation. Mitophagy is the special autophagy, functions as the selective scavenger towards the impaired mitochondria. Mitochondrial dysfunction was confirmed greatly contribute to the occurrence of neurodegenerative diseases. Through assistance and connection with parkin, P62 is vital for regulating mitophagy, thus, aberrant P62 could influence the balance of mitophagy, and further disturb mitochondrial quality control. Therefore, accumulation of misfolded proteins leads to the aberrant P62 expression, aberrant P62 influence the balance of mitophagy, forming a vicious circle afterwards. In this review, we summarize the observations on the function of P62 relevant to autophagy and mitophagy in neurodegenerative diseases, hoping to give some clear and objective opinions to further study.


Asunto(s)
Autofagia , Mitofagia , Enfermedades Neurodegenerativas/patología , Proteína Sequestosoma-1/fisiología , Animales , Humanos , Deficiencias en la Proteostasis
4.
J Bioenerg Biomembr ; 48(4): 337-47, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27422544

RESUMEN

Mitochondria are organelles responsible for vital cell functions. p53 is a transcription factor that regulates the DNA stability and cell growth normality. Recent studies revealed that p53 can influence mitochondrial function changing from normal condition to abnormal condition under different stress levels. In normal state, p53 can maintain mitochondrial respiration through transactivation of SCO2. When stress stimuli presents, SCO2 overexpresses and leads to ROS generation. ROS promotes p53 inducing MALM (Mieap-induced accumulation of lysosome-like organelles within mitochondria) to repair dysfunctional mitochondria and MIV (Mieap-induced vacuole) to accomplish damaged mitochondria degradation. If stress or damage is irreversible, p53 will translocate to mitochondria, leading into apoptosis or necrosis. Neurodegenerative diseases including Parkinson's disease, Huntington's disease and Alzheimer's disease are still lack of clear explanations of mechanisms, but more studies have revealed the functional relationship between mitochondria and p53 towards the pathological development of these diseases. In this review, we discuss that p53 plays the vital role in the function of mitochondria in the aspect of pathological change metabolism. We also analyze these diseases with novel targeted treating molecules which are related to p53 and mitochondria, hoping to present novel therapies in future clinic.


Asunto(s)
Enfermedades Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/etiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Humanos , Enfermedades Mitocondriales/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo
5.
J Pain Res ; 16: 2619-2632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533560

RESUMEN

Background: Neuropathic pain (NP) is a common and severe problem following spinal cord injury (SCI). However, its relationship with functional outcome remains unclear. Methods: A retrospective explorative analysis was performed on SCI patients admitted to a tertiary academic medical center between January 2018 and June 2022. The candidate predictor variables, including demographics, clinical characteristics and complications, were analyzed with logistic and linear regression. Spinal Cord Independence Measure (SCIM) scores at discharge and mean relative functional gain (mRFG) of SCIM were as outcome parameters. Results: A total of 140 SCI patients included for the final analysis. Among them, 44 (31.43%) patients were tetraplegics, and 96 (68.57%) patients were paraplegics; 68 (48.57%) patients developed NP, and 72 (51.43%) patients did not. Logistic and linear regression analyses of SCIM at discharge both showed that NP [OR=3.10, 95% CI (1.29,7.45), P=0.01; unstandardized ß=11.47, 95% CI (4.95,17.99), P<0.01; respectively] was significantly independent predictors for a favorable outcome (SCIM at discharge ≥ 50, logistic regression results) and higher SCIM total score at discharge (linear regression results). Besides, NP [unstandardized ß=15.67, 95% CI (8.94,22.41), P<0.01] was also independently associated with higher mRFG of SCIM scores. Furthermore, the NP group had significantly higher mRFG, SCIM total scores and subscales (self-care, respiration and sphincter management, and mobility) at discharge compared to the non-NP group. However, there were no significant differences in mRFG, SCIM total score or subscales at discharge among the NP subgroups in terms of locations (at level pain, below level pain, and both) or timing of occurrence (within and after one month after SCI). This study also showed that incomplete injury, lumbar-sacral injury level and non-anemia were significantly independent predictors for a favorable outcome, and higher mRFG of SCIM scores (except for non-anemia). Conclusion: NP appears independently associated with better functional recovery in SCI patients, suggesting the bright side of this undesirable complication. These findings may help to alleviate the psychological burden of NP patients and ultimately restore their confidence in rehabilitation.

6.
Front Neurol ; 14: 1175078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333013

RESUMEN

Background: After spinal cord injury (SCI), the excitability of the primary motor cortex (M1) lower extremity area decreases or disappears. A recent study reported that the M1 hand area of the SCI patient encodes the activity information of both the upper and lower extremities. However, the characteristics of the M1 hand area corticospinal excitability (CSE) changes after SCI and its correlation with extremities motor function are still unknown. Methods: A retrospective study was conducted on the data of 347 SCI patients and 80 healthy controls on motor evoked potentials (MEP, reflection of CSE), extremity motor function, and activities of daily living (ADL) ability. Correlation analysis and multiple linear regression analysis were conducted to analyze the relationship between the degree of MEP hemispheric conversion and extremity motor function/ADL ability. Results: The CSE of the dominant hemisphere M1 hand area decreased in SCI patients. In 0-6 m, AIS A grade, or non-cervical injury SCI patients, the degree of M1 hand area MEP hemispheric conversion was positively correlated with total motor score, lower extremity motor score (LEMS), and ADL ability. Multiple linear regression analysis further confirmed the contribution of MEP hemispheric conversion degree in ADL changes as an independent factor. Conclusion: The closer the degree of M1 hand area MEP hemispheric conversion is to that of healthy controls, the better the extremity motor function/ADL ability patients achieve. Based on the law of this phenomenon, targeted intervention to regulate the excitability of bilateral M1 hand areas might be a novel strategy for SCI overall functional recovery.

7.
Neurotox Res ; 38(3): 553-563, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32696439

RESUMEN

Neuropathic pain affects the physical and mental health status of patients. Due to its complex pathogenesis and the adverse reactions to medicines, its treatment remains challenging. Among all the etiologies, increasing evidence has pointed to mitochondrial dysfunction. Dynamin-related protein 1 (Drp1)-mediated mitochondrial fragmentation leads to excess ROS generation, which is implicated in the pathogenesis of neuropathic pain. However, the exact mechanism remains unclear. Studies aiming to clarify the possible pathway and relationship between Drp1, mitochondria, ROS, and neuropathic pain may identify a good treatment for neuropathic pain in the clinic. As shown in this review, dysfunction of Drp1 and ROS homeostasis plays essential roles in neuropathic pain. We summarized a Drp1-mitochondrial fission-ROS cycle that potentially functions in neuropathic pain and is regulated by posttranslational modifications and Ca2+. Additionally, we further enumerated six Drp1 inhibitors, including Mdivi-1, P110, Drp1 antisense oligodeoxynucleotides, hyperbaric oxygen, melatonin, and ß-hydroxybutyrate, as potential treatments, with the aim of providing guidance for novel molecules to be used in the clinic.


Asunto(s)
Dinaminas/metabolismo , Homeostasis/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Proteínas Mitocondriales/metabolismo , Neuralgia/metabolismo , Neuralgia/patología
8.
Mol Brain ; 13(1): 90, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32522292

RESUMEN

OBJECTIVES: Drp1 is widely expressed in the mouse central nervous system and plays a role in inducing the mitochondrial fission process. Many diseases are associated with Drp1 and mitochondria. However, since the exact distribution of Drp1 has not been specifically observed, it is difficult to determine the impact of anti-Drp1 molecules on the human body. Clarifying the specific Drp1 distribution could be a good approach to targeted treatment or prognosis. METHODS: We visualized the distribution of Drp1 in different brain regions and explicated the relationship between Drp1 and mitochondria. GAD67-GFP knock-in mice were utilized to detect the expression patterns of Drp1 in GABAergic neurons. We also further analyzed Drp1 expression in human malignant glioma tissue. RESULTS: Drp1 was widely but heterogeneously distributed in the central nervous system. Further observation indicated that Drp1 was highly and heterogeneously expressed in inhibitory neurons. Under transmission electron microscopy, the distribution of Drp1 was higher in dendrites than other areas in neurons, and only a small amount of Drp1 was localized in mitochondria. In human malignant glioma, the fluorescence intensity of Drp1 increased from grade I-III, while grade IV showed a declining trend. CONCLUSION: In this study, we observed a wide heterogeneous distribution of Drp1 in the central nervous system, which might be related to the occurrence and development of neurologic disease. We hope that the relationship between Drp1 and mitochondria may will to therapeutic guidance in the clinic.


Asunto(s)
Sistema Nervioso Central/metabolismo , Dinaminas/metabolismo , Animales , Encéfalo/metabolismo , Citoplasma/metabolismo , Dendritas/metabolismo , Dendritas/ultraestructura , Dinaminas/genética , Dinaminas/ultraestructura , Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica , Glioma/metabolismo , Glioma/patología , Glutamato Descarboxilasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , Médula Espinal/metabolismo
9.
Anat Rec (Hoboken) ; 301(5): 825-836, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29149775

RESUMEN

Pain, especially chronic pain, has always been a heated point in both basic and clinical researches since it puts heavy burdens on both individuals and the whole society. A better understanding of the role of biological molecules and various ionic channels involved in pain can shed light on the mechanism under pain and advocate the development of pain management. Using viral vectors to transfer specific genes at targeted sites is a promising method for both research and clinical applications. Lentiviral vectors and adeno-associated virus (AAV) vectors which allow stable and long-term expression of transgene in non-dividing cells are widely applied in pain research. In this review, we thoroughly outline the structure, category, advantages and disadvantages and the delivery methods of lentiviral and AAV vectors. The methods through which lentiviral and AAV vectors are delivered to targeted sites are closely related with the sites, level and period of transgene expression. Focus is placed on the various delivery methods applied to deliver vectors to spinal cord and dorsal root ganglion both of which play important roles in primary nociception. Our goal is to provide insight into the features of these two viral vectors and which administration approach can be chosen for different pain researches. Anat Rec, 301:825-836, 2018. © 2017 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Asunto(s)
Dependovirus , Técnicas de Transferencia de Gen , Vectores Genéticos , Lentivirus , Dolor , Animales , Investigación
10.
Nanoscale Res Lett ; 12(1): 564, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-29027140

RESUMEN

In recent years, graphene (G) and graphene oxide (GO) nanoparticles have begun to be applied in surgical implant surface modification. However, biosafety and antibacterial ability of G and GO are still unclear. In this study, the biosafety of G and GO in vitro was evaluated by co-culture with bone marrow mesenchymal stem cells (BMSCs) and biosafety in vivo was observed by implanting materials into mice muscle tissue. Biosafety results showed that 10 µg/ml was the safety critical concentration for G and GO. When the concentration was more than 10 µg/ml, the cytotoxicity of G and GO showed a dose-dependent manner.Antibacterial results showed that G presented the antibacterial ability with the concentration equal to and more than 100 µg/ml; GO presented the antibacterial ability with the concentration equal to and more than 50 µg/ml. The antibacterial effect of G and GO were in a dose-dependent manner in vitro.The GO or G concentration between 50 and 100 µg/ml may be the better range to keep the balance of cytotoxicity and antibacterial ability. Our study reveals that G and GO have potential to be used in clinic with good biosafety and antibacterial properties in a certain concentration range.

11.
Front Neural Circuits ; 11: 57, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28860974

RESUMEN

As the main input nucleus of the basal ganglion, the striatum executes different functions, including motivation, reward and attention. The functions of the striatum highly rely on its subregions that receive projections from various cortical areas and the distribution of striatonigral neurons that express D1 dopamine (DA) receptors (or D1 medium-sized spiny neurons, D1 MSNs) and striatopallidal neurons that express D2 DA receptors (or D2 MSNs). Using bacterial artificial chromosome (BAC) transgenic mice, several studies have recently been performed on the spatial distribution of D1 and D2 MSNs. However, these studies mainly focused on enumeration of either D1-enhanced fluorescent protein (eGFP) or D2-eGFP in mice. In the present work, we used Drd1a-tdTamato and Drd2-eGFP double BAC transgenic mice to evaluate the spatial pattern of D1 MSNs (red fluorescence) and D2 MSNs (green fluorescence) along the rostro-caudal axis of the dorsal striatum. The dorsal striatum was divided into three subregions: rostral caudoputamen (CPr), intermediate CP (CPi), and caudal CP (CPc) across the rostral-caudal extent of the striatum. The results demonstrate that D1 and D2 MSNs were intermingled with each other in most of these regions. The cell density of D1 MSNs was slightly higher than D2 MSNs through CPr, CPi, and CPc, though it did not reach significance. However, in CPi, the ratio of D1/D2 in the ventromedial CPi group was significantly higher than those in dorsolateral, dorsomedial, and ventrolateral CPi. There was similar proportion of cells that co-expressed D1 and D2 receptors. Moreover, we demonstrated a pathway-specific activation pattern of D1 MSNs and D2 MSNs in a manic like mouse model induced by D-Amphetamine by utilizing this double transgenic mice and c-fos immunoreactivity. Our results may provide a morphological basis for the function or pathophysiology of striatonigral and striatopallidal neurons with diverse cortical inputs to the dorsal striatum.


Asunto(s)
Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Recuento de Células , Cuerpo Estriado/efectos de los fármacos , Dextroanfetamina/farmacología , Inhibidores de Captación de Dopamina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA