Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(7): e2305980, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37800615

RESUMEN

Unclear reaction mechanisms and unsatisfactory power performance hinder the further development of advanced lithium/fluorinated carbon (Li/CFx ) batteries. Herein, the mechano-electrochemical coupling behavior of a CFx cathode is investigated by in situ monitoring strain/stress using digital image correlation (DIC) techniques, electrochemical methods, and theoretical equations. The DIC monitoring results present the distribution and dynamic evolution of the plane strain and indicate strong dependence toward the material structure and discharge rate. The average plane principal strain of fully discharged 2D fluorinated graphene nanosheets (FGNSs) at 0.5 C is 0.50%, which is only 38.5% that of conventional bulk-structure CFx . Furthermore, the superior structural stability of the FGNSs is demonstrated by the microstructure and component characterization before and after discharge. The plane stress evolution is calculated based on theoretical equations, and the contributions of electrochemical and mechanical factors are examined and discussed. Subsequently, a structure-dependent three-region discharge mechanism for CFx electrodes is proposed from a mechanical perspective. Additionally, the surface deformation of Li/FGNSs pouch cells formed during the discharge process is monitored using in situ DIC. This study reveals the discharge mechanism of Li/CFx batteries and facilitates the design of advanced CFx materials.

2.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432375

RESUMEN

Four kinds of sugar (glucose, fructose, sucrose, and maltose) were selected as carbon precursors, and corresponding dense carbon products were prepared using a novel hydrogel carbonization method. The carbonization processes of sugar-polyacrylamide (sugar-PAM) hydrogels were studied in detail. The molecular structures in the raw materials were analyzed by proton nuclear magnetic resonance spectroscopy (1H NMR). Samples prepared at different temperatures were characterized by thermogravimetry analysis (TGA) and Fourier-transform infrared (FTIR) spectroscopy. The morphology and microstructure of sugar-derived carbons were confirmed by field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The results indicated that the sugar solution was surrounded by PAM with a three-dimensional network structure and formed hydrogels in the initial stage. The sugar solution was considered to be separated into nanocapsules. In each nanocapsule, sugar molecules could be limited within the hydrogel via walls formed by PAM chains. The hydroxyl group in the sugar molecules connected with PAM by the hydrogen bond and intermolecular force, which can strengthen the entire hydrogel system. The self-generated pressure of hydrogel constrains the foam of sugar during the heat treatment. Finally, dense carbon materials with low graphitization instead of porous structure were prepared at 1200 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA