RESUMEN
We propose a hybrid fiber-based time synchronization and vibration detection system. The vibration is detected by exploring the idle light of the time synchronization system, i.e., the Rayleigh backscattering of the timing pulse disseminated in the fiber link. The addition of a sensing function does not affect the performance of time synchronization. In the multiuser experimental demonstration, time deviation results are 3.6 ps at τ = 1 s and 1.4 ps at τ = 104 s on the 40-km fiber link. Meanwhile, the hybrid system can accurately detect and locate vibrations occurring on the link. This method enables multiple functions of the optical fiber network without occupying extra optical channels. Moreover, it gives a possible solution for enhancing the security of the time synchronization network through vibration detection.
RESUMEN
PURPOSE: Combined spinal-epidural analgesia (CSEA) is effective but not sufficient for labor pain. This study was conducted to assess the real-time analgesic efficacy, side effects of anesthetic drug dosage, and maternal satisfaction in labor to provide reference for the optimization of labor analgesia. METHODS: This was a prospective, cohort, single-center study that included 3020 women who received CSEA for labor analgesia. The visual analogue scale (VAS) for labor pain, real-time anesthetic drug dosage, side effects, adverse labor outcomes, factors influencing average drug dosage, and maternal satisfaction with CSEA were assessed. RESULTS: Overall, the VAS labor pain score was lowest at the first hour after the anesthesia was given. After 4 h for primiparas and 3 h for multiparas, the VAS score was greater than 3 but the anesthetic drug dosage did not reach the maximum allowed dosage at the same time. The average anesthetic drug dosage was positively correlated with fever, urinary retention, uterine atony, prolonged active phase, prolonged second stage, assisted vaginal delivery, and postpartum hemorrhage. The average anesthetic drug dosage was the highest in women ≤ 20 years old, those with a body mass index (BMI) ≥ 24.9 kg/m2, and those with a primary or secondary education level. CONCLUSION: Appropriate age guidance and emphasis on education of labor analgesia, weight management during pregnancy, and real-time anesthetic dosage adjustment during labor based on VAS pain score may have positive effects on the satisfaction of labor analgesia. CLINICAL TRIAL NUMBER AND REGISTRY: Clinicaltrials.gov (ChiCTR2100051809).
Asunto(s)
Analgesia Epidural , Analgesia Obstétrica , Anestesia Raquidea , Dolor de Parto , Dimensión del Dolor , Humanos , Femenino , Embarazo , Estudios Prospectivos , Adulto , Analgesia Epidural/métodos , Analgesia Obstétrica/métodos , Dolor de Parto/tratamiento farmacológico , Anestesia Raquidea/métodos , Dimensión del Dolor/métodos , Dimensión del Dolor/efectos de los fármacos , Trabajo de Parto/efectos de los fármacos , Adulto Joven , Estudios de Cohortes , Satisfacción del Paciente , Resultado del Tratamiento , Analgésicos/administración & dosificaciónRESUMEN
The present study deals with droplet sizing based on laser-induced fluorescence (LIF) and Mie scattering for varied polarization of the utilized laser (parallel or perpendicular). The polarization-dependent LIF/Mie ratio is studied for micrometric droplets (25-60 µm) produced with a droplet generator. The investigations were carried out with the dye Nile red dissolved in ethanol and ethanol/iso-octane mixtures. A spectral absorption and fluorescence characterization at various dye and ethanol concentrations is carried out in a cuvette in order to identify reabsorption effects. The LIF|| droplet images (index ||: parallel polarization) show a more homogeneous intensity distribution in the droplets and slightly stronger morphology-dependent resonances (MDRs) in comparison to LIF⥠(index â¥: perpendicular polarization). The spectral LIF emissions reveal a dependence of the MDR on the ethanol admixture. The larger the ethanol content, the lower the MDR peak, which is also shifted further to the red part of the spectrum. The Mie droplet signal images are mainly characterized by two distinct glare points, one at the entrance of the laser light (reflection) and one at the exit (first-order refraction). The Mie⥠images show a more pronounced entrance glare point, in comparison to Mie||, where the exit glare point is more pronounced. These observations are in accordance with the theory. The calibration curve of the micro droplet signals revealed a volumetric trend of the LIF signals and a slightly higher LIF⥠signal and sensitivity in comparison to LIF||. The signal Mie⥠follows roughly a quadratic trend on average, while Mie|| follows a linear trend. Consequently, the calculated LIFâ¥/Mie⥠ratio shows a linear trend, whereas the LIF||/Mie|| ratio shows a quadratic trend, which confirms theoretical calculations. A numerical simulation of the Mie signal at various detection angles shows a good agreement with the experimental data at large apertures.
RESUMEN
The present study deals with the solvent-dependent morphology-dependent resonances (MDR) in the laser-induced fluorescence (LIF) signal of monodisperse gasoline droplets (30 µm-60 µm) generated with a droplet generator. To investigate the influence of an ethanol addition to gasoline and the respective LIF signal of the dye nile red dissolved in these fuel blends, a reference gasoline fuel is blended with various ethanol concentrations from E0 (gasoline) to E100 (pure ethanol). A spectral fluorescence characterization of the investigated fuel mixtures at various concentrations is carried out in a micro cell in order to identify the dye and ethanol concentration influence of the respective fuel mixtures. The absorption and emission spectra of the fuel mixtures show a Stokes shift with increasing ethanol concentration towards larger wavelengths. The coefficient of variation (COV) of the fluorescence signals of spherical droplets was utilized to characterize the MDR effects within the droplet LIF images. The investigations revealed an increase of MDR contribution in terms of the COV of LIF signals with larger droplet diameters. For small droplets, no monotonic trend was found for contribution of MDR in the LIF signal as a function of the ethanol concentration. For larger droplets (e.g., 50 µm-60 µm), a lower contribution of MDR in LIF signals was observed with increasing ethanol content. For E80 and most of the studied ethanol blends, the normalized integrated COV values exhibited maxima at certain droplet sizes (40 µm, 47.5 µm, and 55 µm), which indicate the presence of distinct MDR effects.
RESUMEN
The aim of this study was to investigate the role of ethylene to control sprouting of potatoes by observing the effect of exogenous ethylene on carbohydrate metabolism and key enzymes. The initial time of potato tuber sprouting and sprouting index were recorded, and rate of respiration, total sugar, total reducing sugar, starch, fructose, glucose, sucrose and the activities of acid invertase (AI), neutral invertase (NI), sucrose synthase (SS), sucrose phosphate synthase (SPS), starch phosphorylase and amylase during sprouting were measured. Exogenous ethylene inhibited sprouting of potato tubers. Moreover, exogenous ethylene increased respiration total sugar, AI activity, SPS activity, SS activity, and reduced sugar and assay activity. Nevertheless, starch, glucose, fructose, NI activity and starch phosphorylase activity showed lower variation. Lower sprouting resulted into potatoes with higher levels of total sugar, total reducing sugar and glucose, and lower level of fructose and sucrose. And sprouting could be inhibited by increasing the activities of SS, SPS and AI by treatment with 199.3 µl L-1 exogenous ethylene. Overall, exogenous ethylene inhibited sprouting of potato tubers by influencing its carbohydrate metabolism.