Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Genes Dev ; 32(21-22): 1398-1419, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366908

RESUMEN

The transcription factor MYC (also c-Myc) induces histone modification, chromatin remodeling, and the release of paused RNA polymerase to broadly regulate transcription. MYC is subject to a series of post-translational modifications that affect its stability and oncogenic activity, but how these control MYC's function on the genome is largely unknown. Recent work demonstrates an intimate connection between nuclear compartmentalization and gene regulation. Here, we report that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression. We demonstrate that PIN1-mediated localization of MYC to the nuclear pore regulates MYC target genes responsive to mitogen stimulation that are involved in proliferation and migration pathways. These changes are also present at the chromatin level, with an increase in open regulatory elements in response to stimulation that is PIN1-dependent and associated with MYC chromatin binding. Taken together, our study indicates that post-translational modification of MYC controls its spatial activity to optimally regulate gene expression in response to extrinsic signals in normal and diseased states.


Asunto(s)
Poro Nuclear/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Transcripcional , Animales , Línea Celular , Células Cultivadas , Cromatina/metabolismo , Humanos , Ratones , Ratones Noqueados , Mitógenos/farmacología , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-myc/química , Serina/metabolismo , Cicatrización de Heridas , Factores de Transcripción p300-CBP/metabolismo
2.
Nucleic Acids Res ; 51(8): 3934-3949, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36912080

RESUMEN

The RNA exosome is an essential 3' to 5' exoribonuclease complex that mediates degradation, processing and quality control of virtually all eukaryotic RNAs. The nucleolar RNA exosome, consisting of a nine-subunit core and a distributive 3' to 5' exonuclease EXOSC10, plays a critical role in processing and degrading nucleolar RNAs, including pre-rRNA. However, how the RNA exosome is regulated in the nucleolus is poorly understood. Here, we report that the nucleolar ubiquitin-specific protease USP36 is a novel regulator of the nucleolar RNA exosome. USP36 binds to the RNA exosome through direct interaction with EXOSC10 in the nucleolus. Interestingly, USP36 does not significantly regulate the levels of EXOSC10 and other tested exosome subunits. Instead, it mediates EXOSC10 SUMOylation at lysine (K) 583. Mutating K583 impaired the binding of EXOSC10 to pre-rRNAs, and the K583R mutant failed to rescue the defects in rRNA processing and cell growth inhibition caused by knockdown of endogenous EXOSC10. Furthermore, EXOSC10 SUMOylation is markedly reduced in cells in response to perturbation of ribosomal biogenesis. Together, these results suggest that USP36 acts as a SUMO ligase to promote EXOSC10 SUMOylation critical for the RNA exosome function in ribosome biogenesis.


Asunto(s)
Exorribonucleasas , Complejo Multienzimático de Ribonucleasas del Exosoma , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Humanos , Línea Celular
3.
EMBO Rep ; 22(6): e50684, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33852194

RESUMEN

SUMOylation plays a crucial role in regulating diverse cellular processes including ribosome biogenesis. Proteomic analyses and experimental evidence showed that a number of nucleolar proteins involved in ribosome biogenesis are modified by SUMO. However, how these proteins are SUMOylated in cells is less understood. Here, we report that USP36, a nucleolar deubiquitinating enzyme (DUB), promotes nucleolar SUMOylation. Overexpression of USP36 enhances nucleolar SUMOylation, whereas its knockdown or genetic deletion reduces the levels of SUMOylation. USP36 interacts with SUMO2 and Ubc9 and directly mediates SUMOylation in cells and in vitro. We show that USP36 promotes the SUMOylation of the small nucleolar ribonucleoprotein (snoRNP) components Nop58 and Nhp2 in cells and in vitro and their binding to snoRNAs. It also promotes the SUMOylation of snoRNP components Nop56 and DKC1. Functionally, we show that knockdown of USP36 markedly impairs rRNA processing and translation. Thus, USP36 promotes snoRNP group SUMOylation and is critical for ribosome biogenesis and protein translation.


Asunto(s)
Ribonucleoproteínas Nucleolares Pequeñas , Sumoilación , Proteínas de Ciclo Celular/metabolismo , Enzimas Desubicuitinizantes/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteómica , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Ubiquitina Tiolesterasa/genética
4.
J Cell Biochem ; 122(2): 189-197, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786121

RESUMEN

The stability and activity of the p53 tumor suppressor protein are tightly regulated by various posttranslational modifications, including SUMOylation. p53 can be modified by both SUMO1 and SUMO2, although how SUMOylation regulates p53 activity is still obscure. Whether p53 activity is directly regulated by deSUMOylation is also unclear. Here, we show that SENP1, a SUMO-specific protease implicated in pro-oncogenic roles, is a p53 deSUMOylating enzyme. SENP1 interacts with p53 and deSUMOylates p53 in cells and in vitro. Knockdown of SENP1 markedly induced p53 transactivation activity. We further show that SENP1 depletion synergizes with DNA damage-inducing agent etoposide to induce p53 activation and the expression of p21, leading to synergistic growth inhibition of cancer cells. Our results reveal that SENP1 is a critical p53 deSUMOylating enzyme and a promising therapeutic target in wild-type p53 containing cancer cells.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Cisteína Endopeptidasas/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Etopósido/farmacología , Humanos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/genética , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteína p53 Supresora de Tumor/genética
5.
Proc Natl Acad Sci U S A ; 115(43): 10983-10988, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30305424

RESUMEN

Posttranslational modifications play a crucial role in the proper control of c-Myc protein stability and activity. c-Myc can be modified by small ubiquitin-like modifier (SUMO). However, how SUMOylation regulates c-Myc stability and activity remains to be elucidated. The deSUMOylation enzyme, SENP1, has recently been shown to have a prooncogenic role in cancer; however, mechanistic understanding of this is limited. Here we show that SENP1 is a c-Myc deSUMOylating enzyme. SENP1 interacts with and deSUMOylates c-Myc in cells and in vitro. Overexpression of wild-type SENP1, but not its catalytically inactive C603S mutant, markedly stabilizes c-Myc and increases its levels and activity. Knockdown of SENP1 reduces c-Myc levels, induces cell cycle arrest, and drastically suppresses cell proliferation. We further show that c-Myc can be comodified by both ubiquitination and SUMOylation. SENP1-mediated deSUMOylation reduces c-Myc polyubiquitination, suggesting that SUMOylation promotes c-Myc degradation through the proteasome system. Interestingly, SENP1-mediated deSUMOylation promotes the accumulation of monoubiquitinated c-Myc and its phosphorylation at serine 62 and threonine 58. SENP1 is frequently overexpressed, correlating with the high expression of c-Myc, in breast cancer tissues. Together, these results reveal that SENP1 is a crucial c-Myc deSUMOylating enzyme that positively regulates c-Myc's stability and activity.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína SUMO-1/metabolismo , Neoplasias de la Mama/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Sumoilación/fisiología , Ubiquitinación/fisiología
6.
J Cell Biochem ; 119(6): 4945-4956, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29384218

RESUMEN

FOSL1 is frequently overexpressed in multiple types of human cancers including invasive breast cancers and implicated in cancer invasion and metastasis. However, how FOSL1 is overexpressed in cancers remains to be elucidated. Several microRNAs (miRNAs) have been shown to target FOSL1 and are downregulated in human cancers. Here, we report that miR-130a is a novel FOSL1 targeting miRNA. Using gene expression microarray analysis, we found that FOSL1 is among the most up-regulated genes in cells transfected with miR-130a inhibitors. Transient transfection-immunoblot, RNA-immunoprecipitation, and luciferase reporter assays revealed that miR-130a directly targets FOSL1 mRNA at its 3'-UTR. Overexpression of miR-130a significantly reduced the levels of FOSL1 in invasive breast cancer MDA-MB-231 and Hs578T cell lines and suppresses their migration and invasion. This inhibition can be rescued by ectopic expression of miR-130a-resistant FOSL1. Interestingly, we show that overexpression of miR-130a increased the levels of tight-junction protein ZO-1 while inhibition of miR-130a reduced the levels of ZO-1. We further show that miR-130a expression is significantly reduced in cancer tissues from triple-negative breast cancer (TNBC) patients, correlating significantly with the upregulation of FOSL1 expression, compared to non-TNBC tissues. Together, our results reveal that miR-130a directly targets FOSL1 and suppresses the inhibition of ZO-1, thus inhibiting cancer cell migration and invasion, in TNBCs.


Asunto(s)
Movimiento Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs/biosíntesis , Proteínas Proto-Oncogénicas c-fos/biosíntesis , ARN Neoplásico/biosíntesis , Neoplasias de la Mama Triple Negativas/metabolismo , Regulación hacia Arriba , Proteína de la Zonula Occludens-1/biosíntesis , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , MicroARNs/genética , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-fos/genética , ARN Neoplásico/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteína de la Zonula Occludens-1/genética
7.
Biochem Biophys Res Commun ; 495(3): 2363-2368, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29274341

RESUMEN

Histone H2B monoubiquitination plays a critical role in the regulation of gene transcription. Deregulation of H2B monoubiquitination contributes to human pathologies, such as cancer. Here we report that human USP36 is a novel H2Bub1 deubiquitinase. We show that USP36 interacts with H2B and deubiquitinates H2Bub1 in cells and in vitro. Overexpression of USP36 markedly reduced the levels of H2Bub1 in cells. Using the p21 gene as a model, we demonstrate that depletion of USP36 increases H2Bub1 at the p21 locus, primarily within its gene body. Consistently, knockdown of USP36 induced the expression of p21 and inhibits cell proliferation. Together, our results reveal USP36 as a novel H2B deubiquitinase and shed light on its additional functions in regulating gene expression.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Endopeptidasas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación/fisiología , Secuencia Conservada , Enzimas Desubicuitinizantes/genética , Endopeptidasas/genética , Activación Enzimática , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Especificidad por Sustrato , Ubiquitina Tiolesterasa/genética
8.
Proc Natl Acad Sci U S A ; 112(12): 3734-9, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25775507

RESUMEN

c-Myc protein stability and activity are tightly regulated by the ubiquitin-proteasome system. Aberrant stabilization of c-Myc contributes to many human cancers. c-Myc is ubiquitinated by SCF(Fbw7) (a SKP1-cullin-1-F-box complex that contains the F-box and WD repeat domain-containing 7, Fbw7, as the F-box protein) and several other ubiquitin ligases, whereas it is deubiquitinated and stabilized by ubiquitin-specific protease (USP) 28. The bulk of c-Myc degradation appears to occur in the nucleolus. However, whether c-Myc is regulated by deubiquitination in the nucleolus is not known. Here, we report that the nucleolar deubiquitinating enzyme USP36 is a novel c-Myc deubiquitinase. USP36 interacts with and deubiquitinates c-Myc in cells and in vitro, leading to the stabilization of c-Myc. This USP36 regulation of c-Myc occurs in the nucleolus. Interestingly, USP36 interacts with the nucleolar Fbw7γ but not the nucleoplasmic Fbw7α. However, it abolished c-Myc degradation mediated both by Fbw7γ and by Fbw7α. Consistently, knockdown of USP36 reduces the levels of c-Myc and suppresses cell proliferation. We further show that USP36 itself is a c-Myc target gene, suggesting that USP36 and c-Myc form a positive feedback regulatory loop. High expression levels of USP36 are found in a subset of human breast and lung cancers. Altogether, these results identified USP36 as a crucial and bono fide deubiquitinating enzyme controlling c-Myc's nucleolar degradation pathway.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Neoplasias de la Mama/metabolismo , Catálisis , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Proteínas F-Box/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Neoplasias Pulmonares/metabolismo , Microscopía Fluorescente , Ubiquitina-Proteína Ligasas/metabolismo
9.
Biochem Biophys Res Commun ; 482(4): 1271-1277, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27939881

RESUMEN

ASPP2 is a tumor suppressor that works, at least in part, through enhancing p53-dependent apoptosis. We now describe a new ASPP2 isoform, ΔN-ASPP2, generated from an internal transcription start site that encodes an N-terminally truncated protein missing a predicted 254 amino acids. ΔN-ASPP2 suppresses p53 target gene transactivation, promoter occupancy, and endogenous p53 target gene expression in response to DNA damage. Moreover, ΔN-ASPP2 promotes progression through the cell cycle, as well as resistance to genotoxic stress-induced growth inhibition and apoptosis. Additionally, we found that ΔN-ASPP2 expression is increased in human breast tumors as compared to adjacent normal breast tissue; in contrast, ASPP2 is suppressed in the majority of these breast tumors. Together, our results provide insight into how this new ASPP2 isoform may play a role in regulating the ASPP2-p53 axis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/química , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Clonación Molecular , Daño del ADN , Femenino , Humanos , Ratones , Dominios Proteicos , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética
10.
EMBO J ; 31(3): 576-92, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22124327

RESUMEN

The ubiquitin (Ub)-proteasome system plays a pivotal role in the regulation of p53 protein stability and activity. p53 is ubiquitinated and destabilized by MDM2 and several other Ub E3s, whereas it is deubiquitinated and stabilized by Ub-specific protease (USP)7 and USP10. Here we show that the ovarian tumour domain-containing Ub aldehyde-binding protein 1 (Otub1) is a novel p53 regulator. Otub1 directly suppresses MDM2-mediated p53 ubiquitination in cells and in vitro. Overexpression of Otub1 drastically stabilizes and activates p53, leading to apoptosis and marked inhibition of cell proliferation in a p53-dependent manner. These effects are independent of its catalytic activity but require residue Asp88. Mutation of Asp88 to Ala (Otub1(D88A)) abolishes activity of Otub1 to suppress p53 ubiquitination. Further, wild-type Otub1 and its catalytic mutant (Otub1(C91S)), but not Otub1(D88A), bind to the MDM2 cognate E2, UbcH5, and suppress its Ub-conjugating activity in vitro. Overexpression of Otub1(D88A) or ablation of endogenous Otub1 by siRNA markedly impaired p53 stabilization and activation in response to DNA damage. Together, these results reveal a novel function for Otub1 in regulating p53 stability and activity.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Transcripción Genética/fisiología , Proteína p53 Supresora de Tumor/fisiología , Secuencia de Bases , Biocatálisis , Línea Celular Tumoral , Proliferación Celular , Cisteína Endopeptidasas/genética , Daño del ADN , Cartilla de ADN , Enzimas Desubicuitinizantes , Técnicas de Silenciamiento del Gen , Humanos , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/fisiología , Proteína p53 Supresora de Tumor/metabolismo
11.
J Virol ; 89(6): 3038-48, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25552709

RESUMEN

UNLABELLED: Assembly-activating protein (AAP) of adeno-associated virus serotype 2 (AAV2) is a nucleolar-localizing protein that plays a critical role in transporting the viral capsid VP3 protein to the nucleolus for assembly. Here, we identify and characterize AAV2 AAP (AAP2) nuclear (NLS) and nucleolar (NoLS) localization signals near the carboxy-terminal region of AAP2 (amino acid positions 144 to 184) (AAP2(144-184)). This region contains five basic-amino-acid-rich (BR) clusters, KSKRSRR (AAP2BR1), RRR (AAP2BR2), RFR (AAP2BR3), RSTSSR (AAP2BR4), and RRIK (AAP2BR5), from the amino terminus to the carboxy terminus. We created 30 AAP2BR mutants by arginine/lysine-to-alanine mutagenesis or deletion of AAP2BRs and 8 and 1 green fluorescent protein (GFP)-AAP2BR and ß-galactosidase-AAP2BR fusion proteins, respectively, and analyzed their intracellular localization in HeLa cells by immunofluorescence microscopy. The results showed that AAP2(144-184) has redundant multipartite NLSs and that any combinations of 4 AAP2BRs, but not 3 or less, can constitute a functional NLS-NoLS; AAP2BR1 and AAP2BR2 play the most influential role for nuclear localization, but either one of the two AAP2BRs is dispensable if all 4 of the other AAP2BRs are present, resulting in 3 different, overlapping NLS motifs; and the NoLS is shared redundantly among the five AAP2BRs and functions in a context-dependent manner. AAP2BR mutations not only resulted in aberrant intracellular localization, but also attenuated AAP2 protein expression to various degrees, and both of these abnormalities have a significant negative impact on capsid production. Thus, this study reveals the organization of the intermingling NLSs and NoLSs in AAP2 and provides insights into their functional roles in capsid assembly. IMPORTANCE: Adeno-associated virus (AAV) has become a popular and successful vector for in vivo gene therapy; however, its biology has yet to be fully understood. In this regard, the recent discovery of the assembly-activating protein (AAP), a nonstructural, nucleolar-localizing AAV protein essential for viral capsid assembly, has provided us a new opportunity to better understand the fundamental processes required for virion formation. Here, we identify clusters of basic amino acids in the carboxy terminus of AAP from AAV serotype 2 (AAV2) that act as nuclear and nucleolar localization signals. We also demonstrate their importance in maintaining AAP expression levels and efficient production of viral capsids. Insights into the functions of AAP can elucidate the requirements and process for AAV capsid assembly, which may lead to improved vector production for use in gene therapy. This study also contributes to the growing body of work on nuclear and nucleolar localization signals.


Asunto(s)
Nucléolo Celular/virología , Núcleo Celular/virología , Dependovirus/fisiología , Señales de Localización Nuclear , Infecciones por Parvoviridae/virología , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/química , Dependovirus/genética , Humanos , Datos de Secuencia Molecular , Transporte de Proteínas , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética , Ensamble de Virus
12.
J Biol Chem ; 289(8): 5097-108, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24403071

RESUMEN

Ovarian tumor domain-containing ubiquitin (Ub) aldehyde binding protein 1 (Otub1) regulates p53 stability and activity via non-canonical inhibition of the MDM2 cognate Ub-conjugating enzyme (E2) UbcH5. However, it is not clear how this activity of Otub1 is regulated in cells. Here we report that Otub1 is monoubiquitinated by UbcH5 in cells and in vitro, primarily at the lysine 59 and 109 residues. This monoubiquitination, in turn, contributes to the activity of Otub1 to suppress UbcH5. The lysine-free Otub1 mutant (Otub1(K0)) fails to be monoubiquitinated and is unable to suppress the Ub-conjugating activity of UbcH5 in vitro and the MDM2-mediated p53 ubiquitination in cells. Consistently, this mutant is unable to stabilize p53, induce apoptosis, and suppress cell proliferation. Overexpression of Otub1(K0) inhibits DNA-damage induced apoptosis. Adding either Lys-59 or Lys-109 back to the Otub1(K0) mutant restores the monoubiquitination of Otub1 and its function to stabilize and activate p53. We further show that UbcH5 preferentially binds to the monoubiquitinated Otub1 via Ub interaction with its backside donor Ub-interacting surface, suggesting that this binding interferes with the self-assembly of Ub-charged UbcH5 (UbcH5∼Ub) conjugates, which is critical for Ub transfer. Thus, our data reveal novel insights into the Otub1 inhibition of E2 wherein monoubiquitination promotes the interaction of Otub1 with UbcH5 and the function to suppress it.


Asunto(s)
Neoplasias Ováricas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Línea Celular Tumoral , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Daño del ADN , Enzimas Desubicuitinizantes , Femenino , Humanos , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-38764604

RESUMEN

Ribosome biogenesis is essential for cell growth, proliferation, and animal development. Its deregulation leads to various human disorders such as ribosomopathies and cancer. Thus, tight regulation of ribosome biogenesis is crucial for normal cell homeostasis. Emerging evidence suggests that posttranslational modifications such as ubiquitination and SUMOylation play a crucial role in regulating ribosome biogenesis. Our recent studies reveal that USP36, a nucleolar deubiquitinating enzyme (DUB), acts also as a SUMO ligase to regulate nucleolar protein group SUMOylation, thereby being essential for ribosome biogenesis. Here, we provide an overview of the current understanding of the SUMOylation regulation of ribosome biogenesis and discuss the role of USP36 in nucleolar SUMOylation.

14.
J Biol Chem ; 287(13): 10013-10020, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22318725

RESUMEN

Nucleostemin (NS) is a nucleolar GTP-binding protein essential for ribosomal biogenesis, proliferation, and animal embryogenesis. It remains largely unclear how this protein is regulated. While working on its role in suppression of MDM2 and activation of p53, we observed that NS protein (but not mRNA) levels decreased drastically in response to GTP depletion. When trying to further elucidate the molecular mechanism(s) underlying this unusual phenomenon, we found that NS was degraded independently of ubiquitin and MDM2 upon GTP depletion. First, depletion of GTP by treating cells with mycophenolic acid decreased the level of NS without apparently affecting the levels of other nucleolar proteins. Second, mutant NS defective in GTP binding and exported to the nucleoplasm was much less stable than wild-type NS. Although NS was ubiquitinated in cells, its polyubiquitination was independent of Lys-48 or Lys-63 in the ubiquitin molecule. Inactivation of E1 in E1 temperature-sensitive mouse embryonic fibroblast (MEF) cells failed to prevent the proteasomal degradation of NS. The proteasomal turnover of NS was also MDM2-independent, as its half-life in p53/MDM2 double knock-out MEF cells was the same as that in wild-type MEF cells. Moreover, NS ubiquitination was MDM2-independent. Mycophenolic acid or doxorubicin induced NS degradation in various human cancerous cells regardless of the status of MDM2. Hence, these results indicate that NS undergoes a ubiquitin- and MDM2-independent proteasomal degradation when intracellular GTP levels are markedly reduced and also suggest that ubiquitination of NS may be involved in regulation of its function rather than stability.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Proteínas Portadoras/genética , Línea Celular , Núcleo Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/genética , Humanos , Ratones , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/genética , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas de Unión al ARN , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación/fisiología
15.
J Biol Chem ; 287(42): 35496-35505, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22908229

RESUMEN

Lysine acetylation regulates protein stability and function. p300 is a component of the HIF-1 transcriptional complex and positively regulates the transactivation of HIF-1. Here, we show a novel molecular mechanism by which p300 facilitates HIF-1 activity. p300 increases HIF-1α (HIF1α) protein acetylation and stability. The regulation can be opposed by HDAC1, but not by HDAC3, and is abrogated by disrupting HIF1α-p300 interaction. Mechanistically, p300 specifically acetylates HIF1α at Lys-709, which increases the protein stability and decreases polyubiquitination in both normoxia and hypoxia. Compared with the wild-type protein, a HIF1α K709A mutant protein is more stable, less polyubiquitinated, and less dependent on p300. Overexpression of the HIF1α wild-type or K709A mutant in cancer cells lacking the endogenous HIF1α shows that the K709A mutant is transcriptionally more active toward the HIF-1 reporter and some endogenous target genes. Cancer cells containing the K709A mutant are less sensitive to hypoxia-induced growth arrest than the cells containing the HIF1α wild-type. Taken together, these data demonstrate a novel biological consequence upon HIF1α-p300 interaction, in which HIF1α can be stabilized by p300 via Lys-709 acetylation.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Sustitución de Aminoácidos , Puntos de Control del Ciclo Celular/fisiología , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Células HEK293 , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Lisina/genética , Lisina/metabolismo , Mutación Missense , Estabilidad Proteica , Factores de Transcripción p300-CBP/genética
16.
J Biol Chem ; 287(21): 17120-17129, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22467867

RESUMEN

The ARF tumor suppressor protein activates p53 in response to oncogenic stress, whereas ribosomal protein L11 induces p53 following ribosomal stress. Both proteins bind to central, albeit non-overlapping, regions of MDM2 and suppress MDM2 activity toward p53. However, it is not known whether the two pathways are functionally connected. Here we show that ARF directly binds to L11 in vitro and in cells, which then forms a complex with MDM2 and p53. L11 collaboratively enhances ARF-induced p53 transcriptional activity and cell cycle arrest. Supporting these results, knocking down L11 reduces ARF-mediated p53 accumulation and alleviates ARF-induced cell cycle arrest. Interestingly, overexpression of ARF increases the levels of ribosome-free L11 and enhances the interaction of L11 with MDM2 and p53. These results demonstrate that ARF activates p53, at least partly by induction of ribosomal stress, which results in L11 suppression of MDM2, and suggest that the ARF-MDM2-p53 and the L11-MDM2-p53 pathways are functionally connected.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Ribosómicas/biosíntesis , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Unión Proteica/fisiología , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Ribosómicas/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología , Transcripción Genética/fisiología , Proteína p53 Supresora de Tumor/genética
17.
Cancer Res Commun ; 3(3): 459-470, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36950067

RESUMEN

miRNA biogenesis is a cellular process that produces mature miRNAs from their primary transcripts, pri-miRNAs, via two RNAse III enzyme complexes: the Drosha-DGCR8 microprocessor complex in the nucleus and the Dicer-TRBP complex in the cytoplasm. Emerging evidence suggests that miRNA biogenesis is tightly regulated by posttranscriptional and posttranslational modifications and aberrant miRNA biogenesis is associated with various human diseases including cancer. DGCR8 has been shown to be modified by SUMOylation. Yet, the SUMO ligase mediating DGCR8 SUMOylation is currently unknown. Here, we report that USP36, a nucleolar ubiquitin-specific protease essential for ribosome biogenesis, is a novel regulator of DGCR8. USP36 interacts with the microprocessor complex and promotes DGCR8 SUMOylation, specifically modified by SUMO2. USP36-mediated SUMOylation does not affect the levels of DGCR8 and the formation of the Drosha-DGCR8 complex, but promotes the binding of DGCR8 to pri-miRNAs. Consistently, abolishing DGCR8 SUMOylation significantly attenuates its binding to pri-miRNAs and knockdown of USP36 attenuates pri-miRNA processing, resulting in marked reduction of tested mature miRNAs. Induced expression of a SUMOylation-defective mutant of DGCR8 inhibits cell proliferation. Together, these results suggest that USP36 plays an important role in regulating miRNA biogenesis by SUMOylating DGCR8. Significance: This study identifies that USP36 mediates DGCR8 SUMOylation by SUMO2 and is critical for miRNA biogenesis. As USP36 is frequently overexpressed in various human cancers, our study suggests that deregulated USP36-miRNA biogenesis pathway may contribute to tumorigenesis.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Proteínas de Unión al ARN/genética , Procesamiento Postranscripcional del ARN , Carcinogénesis/genética , Neoplasias/genética , Microcomputadores , Ubiquitina Tiolesterasa/genética
18.
Nat Commun ; 14(1): 6473, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833415

RESUMEN

Tumor growth requires elevated ribosome biogenesis. Targeting ribosomes is an important strategy for cancer therapy. The ribosome inhibitor, homoharringtonine (HHT), is used for the clinical treatment of leukemia, yet it is ineffective for the treatment of solid tumors, the reasons for which remain unclear. Here we show that Snail1, a key factor in the regulation of epithelial-to-mesenchymal transition, plays a pivotal role in cellular surveillance response upon ribotoxic stress. Mechanistically, ribotoxic stress activates the JNK-USP36 signaling to stabilize Snail1 in the nucleolus, which facilitates ribosome biogenesis and tumor cell survival. Furthermore, we show that HHT activates the JNK-USP36-Snail1 axis in solid tumor cells, but not in leukemia cells, resulting in solid tumor cell resistance to HHT. Importantly, a combination of HHT with the inhibition of the JNK-USP36-Snail1 axis synergistically inhibits solid tumor growth. Together, this study provides a rationale for targeting the JNK-USP36-Snail1 axis in ribosome inhibition-based solid tumor therapy.


Asunto(s)
Leucemia , Neoplasias , Humanos , Supervivencia Celular , Ribosomas , Nucléolo Celular , Ubiquitina Tiolesterasa
19.
Nat Commun ; 14(1): 5665, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704631

RESUMEN

Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new therapies, however, few mouse models represent the complexity of TNBC. Here, we develop a female TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN. This Myc;Ptenfl model develops heterogeneous triple-negative mammary tumors that display histological and molecular features commonly found in human TNBC. Our research involves deep molecular and spatial analyses on Myc;Ptenfl tumors including bulk and single-cell RNA-sequencing, and multiplex tissue-imaging. Through comparison with human TNBC, we demonstrate that this genetic mouse model develops mammary tumors with differential survival and therapeutic responses that closely resemble the inter- and intra-tumoral and microenvironmental heterogeneity of human TNBC, providing a pre-clinical tool for assessing the spectrum of patient TNBC biology and drug response.


Asunto(s)
Neoplasias Mamarias Animales , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Agresión , Modelos Animales de Enfermedad , Mutación , Fosfohidrolasa PTEN/genética , Neoplasias de la Mama Triple Negativas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
20.
J Biol Chem ; 286(26): 22730-41, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21561866

RESUMEN

Ribosomal proteins play a critical role in tightly coordinating p53 signaling with ribosomal biogenesis. Several ribosomal proteins have been shown to induce and activate p53 via inhibition of MDM2. Here, we report that S27a, a small subunit ribosomal protein synthesized as an 80-amino acid ubiquitin C-terminal extension protein (CEP80), functions as a novel regulator of the MDM2-p53 loop. S27a interacts with MDM2 at the central acidic domain of MDM2 and suppresses MDM2-mediated p53 ubiquitination, leading to p53 activation and cell cycle arrest. Knockdown of S27a significantly attenuates the p53 activation in cells in response to treatment with ribosomal stress-inducing agent actinomycin D or 5-fluorouracil. Interestingly, MDM2 in turn ubiquitinates S27a and promotes proteasomal degradation of S27a in response to actinomycin D treatment, thus forming a mutual-regulatory loop. Altogether, our results reveal that S27a plays a non-redundant role in mediating p53 activation in response to ribosomal stress via interplaying with MDM2.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ciclo Celular , Proteínas de Unión al ADN/genética , Dactinomicina/farmacología , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Proteínas Nucleares/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas Ribosómicas/genética , Transactivadores , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA