Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nano Lett ; 24(3): 950-957, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38198622

RESUMEN

Sonodynamic therapy (SDT) was hampered by the sonosensitizers with low bioavailability, tumor accumulation, and therapeutic efficiency. In situ responsive sonosensitizer self-assembly strategy may provide a promising route for cancer sonotheranositics. Herein, an intelligent sonotheranostic peptide-purpurin conjugate (P18-P) is developed that can self-assemble into supramolecular structures via self-aggregation triggered by rich enzyme cathepsin B (CTSB). After intravenous injection, the versatile probe could achieve deep tissue penetration because of the penetration sequence of P18-P. More importantly, CTSB-triggered self-assembly strongly prolonged retention time, amplified photoacoustic imaging signal for sensitive CTSB detection, and boosted reactive oxygen species for advanced SDT, evoking specific CTSB responsive sonotheranostics. This peptide-purpurin conjugate may serve as an efficient sonotheranostic platform for the early diagnosis of CTSB activity and effective cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Terapia por Ultrasonido , Humanos , Catepsina B , Terapia por Ultrasonido/métodos , Neoplasias/tratamiento farmacológico , Péptidos/uso terapéutico , Especies Reactivas de Oxígeno , Línea Celular Tumoral , Nanopartículas/química
2.
J Am Chem Soc ; 146(4): 2411-2418, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38234111

RESUMEN

Nanographene C222, which consists of a planar graphenic plane containing 222 carbon atoms, holds the record as the largest planar nanographene synthesized to date. However, its complete insolubility makes the processing of C222 difficult. Here we addressed this issue by introducing peripheral substituents perpendicular to the graphene plane, effectively disrupting the interlayer stacking and endowing C222 with good solubility. We also found that the electron-withdrawing substituents played a crucial role in the cyclodehydrogenation process, converting the dendritic polyphenylene precursor to C222. After disrupting the interlayer stacking, the introduction of only a few peripheral carboxylic groups allowed C222 to dissolve in phosphate buffer saline, reaching a concentration of up to 0.5 mg/mL. Taking advantage of the good photosensitizing and photothermal properties of the inner C222 core, the resulting water-soluble C222 emerged as a single-component agent for both photothermal and photodynamic tumor therapy, exhibiting an impressive tumor inhibition rate of 96%.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Terapia Fototérmica , Fotoquimioterapia/métodos , Neoplasias/tratamiento farmacológico
3.
Small ; 19(32): e2300859, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37066745

RESUMEN

In view of the great challenges related to the complexity and heterogeneity of tumors, efficient combination therapy is an ideal strategy for eliminating primary tumors and inhibiting distant tumors. A novel aggregation-induced emission (AIE) phototherapeutic agent called T-TBBTD is developed, which features a donor-acceptor-donor (D-A-D) structure, enhanced twisted molecule conformation, and prolonged second near-infrared window (NIR-II) emission. The multimodal imaging function of the molecule has significance for its treatment time window and excellent photothermal/photodynamic performance for multimode therapy. The precise molecular structure and versatility provide prospects for molecular therapy for anti-tumor applications. Fluorescence imaging in the NIR-II window offers advantages with enhanced spatial resolution, temporal resolution, and penetration depth. The prepared AIE@R837 NPs also have controllable performance for antitumor photo-immunotherapy. Following local photo-irradiation, AIE@R837 NPs generate abundant heat, and 1 O2 directly kills tumor cells, induces immunogenic cell death (ICD) as a photo-therapeutic effect, and releases R837, which enhances the synergistic effect of antigen presentation and contributes to the long-lasting protective antitumor immunity. A bilateral 4T1 tumor model revealed that this photo-immunotherapy can eliminate primary tumors. More importantly, it has a significant inhibitory effect on distant tumor growth. Therefore, this method can provide a new strategy for tumor therapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Imiquimod , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Neoplasias/patología , Imagen Óptica/métodos , Inmunoterapia/métodos , Imagen Multimodal , Nanopartículas/química , Línea Celular Tumoral , Fototerapia/métodos
4.
J Nanobiotechnology ; 20(1): 61, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109867

RESUMEN

BACKGROUND: Photoimmunotherapy is one of the most promising strategies in tumor immunotherapies, but targeted delivery of photosensitizers and adjuvants to tumors remains a major challenge. Here, as a proof of concept, we describe bone marrow mesenchymal stem cell-derived nanovesicles (NVs) displaying anti-PD-L1 antibodies (aPD-L1) that were genetically engineered for targeted drug delivery. RESULTS: The high affinity and specificity between aPD-L1 and tumor cells allow aPD-L1 NVs to selectively deliver photosensitizers to cancer tissues and exert potent directed photothermal ablation. The tumor immune microenvironment was programmed via ablation, and the model antigen ovalbumin (OVA) was designed to fuse with aPD-L1. The corresponding membrane vesicles were then extracted as an antigen-antibody integrator (AAI). AAI can work as a nanovaccine with the immune adjuvant R837 encapsulated. This in turn can directly stimulate dendritic cells (DCs) to boast the body's immune response to residual lesions. CONCLUSIONS: aPD-L1 NV-based photoimmunotherapy significantly improves the efficacy of photothermal ablation and synergistically enhances subsequent immune activation. This study describes a promising strategy for developing ligand-targeted and personalized cancer photoimmunotherapy.


Asunto(s)
Inmunoterapia , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/terapia , Fototerapia , Microambiente Tumoral
5.
Angew Chem Int Ed Engl ; 61(50): e202211674, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36184566

RESUMEN

A lack of targeting accuracy and radiosensitivity severely limits clinical radiotherapy. In this study, we developed a radiosensitizer comprised of Ru-based metal-organic nanostructures (ZrRuMn-MONs@mem) to optimize irradiation by maximizing reactive oxygen species (ROS) generation and CO release in X-ray-induced dynamic therapy (XDT). The well-designed nanostructures increase the direct absorption of radiation doses (primary radiation) and promote the deposition of photons and electrons (secondary radiation). The secondary electrons were trapped and transferred in the constrained MONs where they induce a cascade of reactions to increase the therapeutic efficiency. Meanwhile, the full-length antiglypican 3 (GPC3) antibody (hGC33) expressed a cell membrane coating enabling active targeting of tumor sites with optimized biocompatibility. The ZrRuMn-MONs@mem represents a starting point for advancing an all-around radiosensitizer that operates efficiently in clinical XDT.


Asunto(s)
Nanoestructuras , Fármacos Sensibilizantes a Radiaciones , Rutenio , Especies Reactivas de Oxígeno/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Nanoestructuras/química , Electrones , Línea Celular Tumoral
6.
Adv Healthc Mater ; 13(5): e2302192, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018632

RESUMEN

Corneal neovascularization (CNV) is one of the leading causes of blindness in the world. In clinical practice; however, it remains a challenge to achieve a noninvasive and safe treatment. Herein, a biocompatible shell with excellent antioxidant and antivascularity is prepared by co-assembly of epigallocatechin gallate/gallic acid and Cu (II). After loading glucose oxidase (GOx) inside, the shell is modified with dimeric DPA-Zn for codelivering vascular endothelial growth factor (VEGF) small interfering RNA (VEGF-siRNA). Meanwhile, the Arg-Gly-Asp peptide (RGD) peptide-engineered cell membranes coating improves angiogenesis-targeting and is biocompatible for the multifunctional nanomedicine (CEGs/RGD). After eye drops administration, CEGs/RGD targets enrichment in neovascularization and CEGs NPs enter cells. Then, the inner GOx consumes glucose with a decrease in local pH, which in turn leads to the release of EGCE and VEGF-siRNA. As a result, the nanomedicines significantly reduce angiogenesis and inhibit CNV formation through synergistic effect of antioxidant and antivascular via down-regulation of cluster of differentiation 31 and VEGF. The nanomedicine represents a safe and efficient CNV treatment through the combined effect of antioxidant/gene, which provides important theoretical and clinical significance.


Asunto(s)
Neovascularización de la Córnea , Humanos , Neovascularización de la Córnea/tratamiento farmacológico , Neovascularización de la Córnea/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , ARN Interferente Pequeño/farmacología , Oligopéptidos/farmacología
7.
Adv Mater ; 36(15): e2310818, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190432

RESUMEN

Tumor calcification is found to be associated with the benign prognostic, and which shows considerable promise as a somewhat predictive index of the tumor response clinically. However, calcification is still a missing area in clinical cancer treatment. A specific strategy is proposed for inducing tumor calcification through the synergy of calcium peroxide (CaO2)-based microspheres and transcatheter arterial embolization for the treatment of hepatocellular carcinoma (HCC). The persistent calcium stress in situ specifically leads to powerful tumor calcioptosis, resulting in diffuse calcification and a high-density shadow on computed tomography that enables clear localization of the in vivo tumor site and partial delineation of tumor margins in an orthotopic HCC rabbit model. This osmotic calcification can facilitate tumor clinical diagnosis, which is of great significance in differentiating tumor response during early follow-up periods. Proteome and phosphoproteome analysis identify that calreticulin (CALR) is a crucial target protein involved in tumor calcioptosis. Further fluorescence molecular imaging analysis also indicates that CALR can be used as a prodromal marker of calcification to predict tumor response at an earlier stage in different preclinical rodent models. These findings suggest that upregulated CALR in association with tumor calcification, which may be broadly useful for quick visualization of tumor response.


Asunto(s)
Carcinoma Hepatocelular , Embolización Terapéutica , Neoplasias Hepáticas , Animales , Conejos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Detección Precoz del Cáncer , Microesferas
8.
Adv Healthc Mater ; 12(17): e2300110, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36773310

RESUMEN

It is an engaging program for tumor treatment that rationalizes the specific microenvironments, activation of suppressed immune system (immune resistance/escape reversion), and synergistic target therapy. Herein, a biomimetic nanoplatform that combines oxidative stress with genetic immunotherapy to strengthen the therapeutic efficacy is developed. Ru-TePt nanorods, small interfering RNA (PD-L1 siRNA), and biomimetic cellular membrane vesicles with the targeting ability to design a multifunctional Ru-TePt@siRNA-MVs system are rationally integrated. Notably, the Fenton-like activity significantly enhances Ru-TePt nanorods sonosensitization, thus provoking stronger oxidative stress to kill cells directly. Meanwhile, immunogenic cell death is triggered to secrete numerous cytokines and activate T cells. The effective catalase characteristics of Ru-TePt enable the in situ oxygen-producing pump to improve tumor oxygen level and coordinately strengthen the therapeutic effect of SDT followed. More importantly, anti-PD-L1-siRNA mediated immune checkpoint silence of the PD-L1 gene creates an environment conducive to activating cytotoxic T lymphocytes, synergistic with boosted reactive oxygen species-triggered antitumor immune response. The experimental results in vitro and in vivo reveal that the Ru-TePt@siRNA-MVs nanosystems can effectively activate the oxidative stress-triggered immune response and inhibit PD-1/PD-L1 axis-mediated immune resistance. Consequently, this orchestrated treatment paradigm provides valuable insights for developing potential oxidative stress and genetic immunotherapy.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Regulación hacia Abajo , Neoplasias/terapia , Estrés Oxidativo , ARN Interferente Pequeño/genética , Antígeno B7-H1/genética , Línea Celular Tumoral , Microambiente Tumoral
9.
Nanomicro Lett ; 12(1): 96, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34138079

RESUMEN

Thrombosis is a global health issue and one of the leading factors of death. However, its diagnosis has been limited to the late stages, and its therapeutic window is too narrow to provide reasonable and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, allergic reactions, inactivation, and unwanted tissue hemorrhage. Nano-medicines have gained extensive attention in diagnosis, drug delivery, and photo/sound/magnetic-theranostics due to their convertible properties. Furthermore, diagnosis and treatment of thrombosis using nano-medicines have also been widely studied. This review summarizes the recent advances in this area, which revealed six types of nanoparticle approaches: (1) in vitro diagnostic kits using "synthetic biomarkers"; (2) in vivo imaging using nano-contrast agents; (3) targeted drug delivery systems using artificial nanoparticles; (4) microenvironment responsive drug delivery systems; (5) drug delivery systems using biological nanostructures; and (6) treatments with external irradiation. The investigations of nano-medicines are believed to be of great significance, and some of the advanced drug delivery systems show potential applications in clinical theranotics.

10.
Adv Sci (Weinh) ; 7(14): 2000346, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32714751

RESUMEN

Corneal neovascularization (CNV) is one of the main factors that induce blindness worldwide. However, current medical treatments cannot achieve non-invasive and safe inhibition of CNV. A noninvasive photoacoustic imaging (PAI)-guided method is purposed for the regression of CNV. PAI can monitor the oxygen saturation of cornea blood vessels through the endogenous contrast of hemoglobin and trace administrated drugs by themselves as exogenous contrast agents. An indocyanine green (ICG)-based nanocomposite (R-s-ICG) is prepared for CNV treatment via eye drops and subconjunctival injections. It is demonstrated that R-s-ICG can enrich corneal tissues and pathological blood vessels rapidly with minor residua in normal eyeball tissues. Anti-CNV treatment-driven changes in the blood vessels are assessed by real-time multimodal PAI in vivo, and then a safe laser irradiation strategy through the canthus is developed for phototherapy and gene therapy synergistic treatment. The treatment leads to the efficient inhibition of CNV with faint damages to normal tissues.

11.
J Control Release ; 323: 635-643, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32302761

RESUMEN

Accurate identification of surgical margins for malignancy remains a challenge in the surgical therapy of cancer, and this encountered interoperative difficulties which directly contribute to the prognosis of patients. In recent years, indocyanine green (ICG) has been approved and applied in clinical settings for lesions detection, especially for the precise surgical resection. However, rapid clearance and poor stability greatly limit its clinical practicality. Herein, a super-stable homogeneous iodinated formulation technology (SHIFT) is designed to realize sufficient dispersion of ICG into lipiodol (SHIFTs) for transcatheter embolization (TAE) synergistic fluorescence-guided resection. Particularly, SHIFTs is prepared in a green physical mixture via a carrier-free manner, which possesses controlled morphology, long-term stability, and improved optical characteristics of ICG (fluorescence/photoacoustic/photothermal activities). Furthermore, the viscosity of the synthetic solvent is comparable to lipiodol, and further assessment demonstrated the same efficacy in computed tomography. The performance of SHIFTs in the fluorescence navigation was further evaluated in vivo by TAE therapy to the rabbit VX2 tumor model for a two-week monitor. The integration of near-infrared fluorescence surgery navigation and TAE could effectively guarantee the precise resection for hepatocellular carcinoma. This SHIFT system provides good potentials for ameliorating the dilemma of precise fluorescent navigation for surgical resection after arterial embolization in clinical practice.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Colorantes , Aceite Etiodizado , Humanos , Verde de Indocianina , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Conejos
12.
ACS Nano ; 14(3): 2880-2893, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32125820

RESUMEN

Micro/nanorobots have been extensively explored as a tetherless small-scale robotic biodevice to perform minimally invasive interventions in hard-to-reach regions. Despite the emergence of versatile micro/nanorobots in recent years, matched in vivo development remains challenging, limited by unsatisfactory integration of core functions. Herein, we report a polydopamine (PDA)-coated magnetic microswimmer consisting of a magnetized Spirulina (MSP) matrix and PDA surface. Apart from the properties of the existing MSP (e.g., robust propulsion, natural fluorescence, tailored biodegradation, and selective cytotoxicity), the introduced PDA coating enhances the photoacoustic (PA) signal and photothermal effect of the MSP, thus making PA image tracking and photothermal therapy possible. Meanwhile, the PDA's innate fluorescence quenching and diverse surface reactivity allows an off-on fluorescence diagnosis with fluorescence probes (e.g., coumarin 7). As a proof of concept, real-time image tracking (by PA imaging) and desired theranostic capabilities of PDA-MSP microswimmer swarms are demonstrated for the treatment of pathogenic bacterial infection. Our study suggests a feasible antibacterial microrobot for in vivo development and a facile yet versatile functionalization strategy of micro/nanorobots.


Asunto(s)
Infecciones Bacterianas/diagnóstico por imagen , Colorantes Fluorescentes/química , Indoles/química , Técnicas Fotoacústicas , Fototerapia , Polímeros/química , Spirulina/química , Animales , Antibacterianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Claritromicina/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Fenómenos Magnéticos , Ratones , Pruebas de Sensibilidad Microbiana , Imagen Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA