Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Genomics ; 18(1): 41, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654324

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are prevalent birth defects. Although pathogenic CAKUT genes are known, they are insufficient to reveal the causes for all patients. Our previous studies indicated GEN1 as a pathogenic gene of CAKUT in mice, and this study further investigated the correlation between GEN1 and human CAKUT. METHODS: In this study, DNA from 910 individuals with CAKUT was collected; 26 GEN1 rare variants were identified, and two GEN1 (missense) variants in a non-CAKUT group were found. Mainly due to the stability results of the predicted mutant on the website, in vitro, 10 variants (eight CAKUT, two non-CAKUT) were selected to verify mutant protein stability. In addition, mainly based on the division of the mutation site located in the functional region of the GEN1 protein, 8 variants (six CAKUT, two non-CAKUT) were selected to verify enzymatic hydrolysis, and the splice variant GEN1 (c.1071 + 3(IVS10) A > G) was selected to verify shear ability. Based on the results of in vitro experiments and higher frequency, three sites with the most significant functional change were selected to build mouse models. RESULTS: Protein stability changed in six variants in the CAKUT group. Based on electrophoretic mobility shift assay of eight variants (six CAKUT, two non-CAKUT), the enzymatic hydrolysis and DNA-binding abilities of mutant proteins were impaired in the CAKUT group. The most serious functional damage was observed in the Gen1 variant that produced a truncated protein. A mini-gene splicing assay showed that the variant GEN1 (c.1071 + 3(IVS10) A > G) in the CAKUT group significantly affected splicing function. An abnormal exon10 was detected in the mini-gene splicing assay. Point-mutant mouse strains were constructed (Gen1: c.1068 + 3 A > G, p.R400X, and p.T105R) based on the variant frequency in the CAKUT group and functional impairment in vitro study and CAKUT phenotypes were replicated in each. CONCLUSION: Overall, our findings indicated GEN1 as a risk factor for human CAKUT.


Asunto(s)
Anomalías Urogenitales , Reflujo Vesicoureteral , Animales , Femenino , Humanos , Masculino , Ratones , Predisposición Genética a la Enfermedad , Riñón/anomalías , Riñón/patología , Riñón/metabolismo , Mutación/genética , Estabilidad Proteica , Factores de Riesgo , Sistema Urinario/anomalías , Sistema Urinario/patología , Anomalías Urogenitales/genética , Anomalías Urogenitales/patología , Reflujo Vesicoureteral/genética , Reflujo Vesicoureteral/patología
2.
J Am Soc Nephrol ; 34(2): 273-290, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36414417

RESUMEN

BACKGROUND: About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant. METHODS: To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models. RESULTS: We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. CONCLUSIONS: Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.


Asunto(s)
Sistema Urinario , Anomalías Urogenitales , Humanos , Ratones , Animales , Perros , Anomalías Urogenitales/genética , Riñón/anomalías , Sistema Urinario/anomalías , Integrinas/metabolismo , Proteínas Mutantes/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética
3.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891193

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Asunto(s)
Proteínas de Unión al ADN/genética , Epigénesis Genética , Factores de Transcripción Forkhead/genética , Mutación , Proteínas Represoras/genética , Factores de Transcripción/genética , Sistema Urinario/metabolismo , Anomalías Urogenitales/genética , Proteínas Anfibias/antagonistas & inhibidores , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo , Animales , Estudios de Casos y Controles , Niño , Preescolar , Proteínas de Unión al ADN/metabolismo , Familia , Femenino , Factores de Transcripción Forkhead/metabolismo , Heterocigoto , Humanos , Lactante , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Ratones , Ratones Noqueados , Morfolinos/genética , Morfolinos/metabolismo , Linaje , Unión Proteica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Sistema Urinario/anomalías , Anomalías Urogenitales/metabolismo , Anomalías Urogenitales/patología , Secuenciación del Exoma , Xenopus
4.
Am J Hum Genet ; 105(6): 1286-1293, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31708116

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life, and in utero obstruction to urine flow is a frequent cause of secondary upper urinary tract malformations. Here, using whole-exome sequencing, we identified three different biallelic mutations in CHRNA3, which encodes the α3 subunit of the nicotinic acetylcholine receptor, in five affected individuals from three unrelated families with functional lower urinary tract obstruction and secondary CAKUT. Four individuals from two families have additional dysautonomic features, including impaired pupillary light reflexes. Functional studies in vitro demonstrated that the mutant nicotinic acetylcholine receptors were unable to generate current following stimulation with acetylcholine. Moreover, the truncating mutations p.Thr337Asnfs∗81 and p.Ser340∗ led to impaired plasma membrane localization of CHRNA3. Although the importance of acetylcholine signaling in normal bladder function has been recognized, we demonstrate for the first time that mutations in CHRNA3 can cause bladder dysfunction, urinary tract malformations, and dysautonomia. These data point to a pathophysiologic sequence by which monogenic mutations in genes that regulate bladder innervation may secondarily cause CAKUT.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/etiología , Riñón/anomalías , Mutación , Receptores Nicotínicos/genética , Sistema Urinario/anomalías , Anomalías Urogenitales/etiología , Adulto , Enfermedades del Sistema Nervioso Autónomo/genética , Enfermedades del Sistema Nervioso Autónomo/patología , Femenino , Estudios de Seguimiento , Humanos , Riñón/patología , Masculino , Linaje , Pronóstico , Sistema Urinario/patología , Anomalías Urogenitales/genética , Anomalías Urogenitales/patología , Adulto Joven
5.
Genet Med ; 24(2): 307-318, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906515

RESUMEN

PURPOSE: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the leading cause of chronic kidney disease in children. In total, 174 monogenic causes of isolated or syndromic CAKUT are known. However, syndromic features may be overlooked when the initial clinical diagnosis of CAKUT is made. We hypothesized that the yield of a molecular genetic diagnosis by exome sequencing (ES) can be increased by applying reverse phenotyping, by re-examining the case for signs/symptoms of the suspected clinical syndrome that results from the genetic variant detected by ES. METHODS: We conducted ES in an international cohort of 731 unrelated families with CAKUT. We evaluated ES data for variants in 174 genes, in which variants are known to cause isolated or syndromic CAKUT. In cases in which ES suggested a previously unreported syndromic phenotype, we conducted reverse phenotyping. RESULTS: In 83 of 731 (11.4%) families, we detected a likely CAKUT-causing genetic variant consistent with an isolated or syndromic CAKUT phenotype. In 19 of these 83 families (22.9%), reverse phenotyping yielded syndromic clinical findings, thereby strengthening the genotype-phenotype correlation. CONCLUSION: We conclude that employing reverse phenotyping in the evaluation of syndromic CAKUT genes by ES provides an important tool to facilitate molecular genetic diagnostics in CAKUT.


Asunto(s)
Sistema Urinario , Anomalías Urogenitales , Alelos , Exoma/genética , Humanos , Riñón/anomalías , Anomalías Urogenitales/genética , Reflujo Vesicoureteral
6.
Am J Med Genet A ; 188(1): 310-313, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525250

RESUMEN

Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of early-onset chronic kidney disease. In a previous study, we identified a heterozygous truncating variant in nuclear receptor-interacting protein 1 (NRIP1) as CAKUT causing via dysregulation of retinoic acid signaling. This large family remains the only family with NRIP1 variant reported so far. Here, we describe one additional CAKUT family with a truncating variant in NRIP1. By whole-exome sequencing, we identified one heterozygous frameshift variant (p.Asn676Lysfs*27) in an isolated CAKUT patient with bilateral hydroureteronephrosis and right grade V vesicoureteral reflux (VUR) and in the affected father with left renal hypoplasia. The variant is present twice in a heterozygous state in the gnomAD database of 125,000 control individuals. We report the second CAKUT family with a truncating variant in NRIP1, confirming that loss-of-function mutations in NRIP1 are a novel monogenic cause of human autosomal dominant CAKUT.


Asunto(s)
Sistema Urinario , Anomalías Urogenitales , Reflujo Vesicoureteral , Árabes , Humanos , Riñón/anomalías , Proteína de Interacción con Receptores Nucleares 1/genética , Anomalías Urogenitales/diagnóstico , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Secuenciación del Exoma
7.
Am J Med Genet A ; 188(5): 1355-1367, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35040250

RESUMEN

Spina bifida (SB) is the second most common nonlethal congenital malformation. The existence of monogenic SB mouse models and human monogenic syndromes with SB features indicate that human SB may be caused by monogenic genes. We hypothesized that whole exome sequencing (WES) allows identification of potential candidate genes by (i) generating a list of 136 candidate genes for SB, and (ii) by unbiased exome-wide analysis. We generated a list of 136 potential candidate genes from three categories and evaluated WES data of 50 unrelated SB cases for likely deleterious variants in 136 potential candidate genes, and for potential SB candidate genes exome-wide. We identified 6 likely deleterious variants in 6 of the 136 potential SB candidate genes in 6 of the 50 SB cases, whereof 4 genes were derived from mouse models, 1 gene was derived from human nonsyndromic SB, and 1 gene was derived from candidate genes known to cause human syndromic SB. In addition, by unbiased exome-wide analysis, we identified 12 genes as potential candidates for SB. Identification of these 18 potential candidate genes in larger SB cohorts will help decide which ones can be considered as novel monogenic causes of human SB.


Asunto(s)
Exoma , Disrafia Espinal , Animales , Modelos Animales de Enfermedad , Exoma/genética , Humanos , Ratones , Disrafia Espinal/genética , Secuenciación del Exoma
8.
Nephrol Dial Transplant ; 37(10): 1833-1843, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34473308

RESUMEN

BACKGROUND: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidneys, may also represent monogenic causes of CAKUT. METHODS: We here performed whole-exome sequencing (WES) in 541 families with CAKUT and generated four lists of CAKUT candidate genes: (A) 36 FOX genes showing high expression during renal development, (B) 4 FOX genes known to cause CAKUT to validate list A, (C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families and (D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes. RESULTS: To prioritize potential novel CAKUT candidates in the FOX gene family, we overlapped 36 FOX genes (list A) with lists C and D of WES-derived CAKUT candidates. Intersection with list C identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals. CONCLUSIONS: We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.


Asunto(s)
Sistema Urinario , Anomalías Urogenitales , Proteína Forkhead Box L2/genética , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-gamma del Hepatocito/genética , Humanos , Riñón/anomalías , Sistema Urinario/anomalías , Anomalías Urogenitales/genética , Reflujo Vesicoureteral , Secuenciación del Exoma
9.
Exp Cell Res ; 407(2): 112753, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34499887

RESUMEN

Peroxisome proliferator-activated receptor α (PPARα) activation has been reported to exert protective effects on podocytes, whereas angiopoietin-like 3 (ANGPTL3) has been shown to exert significant pathogenic effects on these cells. This study aimed to investigate the link between the protective effects of PPARα activation and the pathogenic effects of ANGPTL3 in podocytes. Both PPARα and ANGPTL3 were expressed in cultured podocytes. PPARα mRNA and protein levels decreased whereas ANGPTL3 mRNA and protein levels increased in a time-dependent manner in podocytes treated with puromycin aminonucleoside (PAN). Gemfibrozil, a pharmacological agonist of PPARα, increased PPARα levels and activity in podocytes. The drug also decreased ANGPTL3 levels by potentially weakening ANGPTL3 promoter activity in both normal and PAN-treated podocytes. Furthermore, gemfibrozil significantly decreased PAN-induced apoptosis and F-actin rearrangement. Primary podocytes from Angptl3-knockout mice were cultured. There was no significant difference between Angptl3-/- podocytes treated with or without gemfibrozil in the lamellipodia numbers after PAN treatment. The results suggested that the protective effects of gemfibrozil on podocytes were not exerted following knockout of the Angptl3 gene. This study identified a novel mechanism of the PPARα agonist gemfibrozil that exerts its protective effects by inhibiting PAN-induced apoptosis and cytoskeleton rearrangements through inhibition of ANGPTL3 expression.


Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Proteínas Similares a la Angiopoyetina/fisiología , Gemfibrozilo/farmacología , PPAR alfa/agonistas , Podocitos/efectos de los fármacos , Seudópodos/efectos de los fármacos , Puromicina Aminonucleósido/farmacología , Proteína 3 Similar a la Angiopoyetina , Animales , Apoptosis , Hipolipemiantes/farmacología , Ratones , Ratones Noqueados , Podocitos/metabolismo , Podocitos/patología , Factores Protectores , Seudópodos/metabolismo
10.
Am J Med Genet A ; 185(12): 3784-3792, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34338422

RESUMEN

The acronym VATER/VACTERL refers to the rare nonrandom association of the following component features (CFs): vertebral defects (V), anorectal malformations (ARM) (A), cardiac anomalies (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb anomalies (L). For the clinical diagnosis, the presence of at least three CFs is required, individuals presenting with only two CFs have been categorized as VATER/VACTERL-like. The majority of VATER/VACTERL individuals displays a renal phenotype. Hitherto, variants in FGF8, FOXF1, HOXD13, LPP, TRAP1, PTEN, and ZIC3 have been associated with the VATER/VACTERL association; however, large-scale re-sequencing could only confirm TRAP1 and ZIC3 as VATER/VACTERL disease genes, both associated with a renal phenotype. In this study, we performed exome sequencing in 21 individuals and their families with a renal VATER/VACTERL or VATER/VACTERL-like phenotype to identify potentially novel genetic causes. Exome analysis identified biallelic and X-chromosomal hemizygous potentially pathogenic variants in six individuals (29%) in B9D1, FREM1, ZNF157, SP8, ACOT9, and TTLL11, respectively. The online tool GeneMatcher revealed another individual with a variant in ZNF157. Our study suggests six biallelic and X-chromosomal hemizygous VATER/VACTERL disease genes implicating all six genes in the expression of human renal malformations.


Asunto(s)
Malformaciones Anorrectales/genética , Atresia Esofágica/genética , Predisposición Genética a la Enfermedad , Cardiopatías/genética , Fístula Traqueoesofágica/genética , Malformaciones Anorrectales/complicaciones , Malformaciones Anorrectales/patología , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , Atresia Esofágica/complicaciones , Atresia Esofágica/patología , Femenino , Genes Ligados a X/genética , Estudios de Asociación Genética , Proteínas HSP90 de Choque Térmico/genética , Cardiopatías/complicaciones , Cardiopatías/patología , Hemicigoto , Proteínas de Homeodominio/genética , Humanos , Riñón/anomalías , Masculino , Receptores de Interleucina/genética , Fístula Traqueoesofágica/complicaciones , Fístula Traqueoesofágica/patología , Factores de Transcripción/genética , Secuenciación del Exoma
11.
Genet Med ; 22(10): 1673-1681, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32475988

RESUMEN

PURPOSE: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in childhood and adolescence. We aim to identify novel monogenic causes of CAKUT. METHODS: Exome sequencing was performed in 550 CAKUT-affected families. RESULTS: We discovered seven FOXC1 heterozygous likely pathogenic variants within eight CAKUT families. These variants are either never reported, or present in <5 alleles in the gnomAD database with ~141,456 controls. FOXC1 is a causal gene for Axenfeld-Rieger syndrome type 3 and anterior segment dysgenesis 3. Pathogenic variants in FOXC1 have not been detected in patients with CAKUT yet. Interestingly, mouse models for Foxc1 show severe CAKUT phenotypes with incomplete penetrance and variable expressivity. The FOXC1 variants are enriched in the CAKUT cohort compared with the control. Genotype-phenotype correlations showed that Axenfeld-Rieger syndrome or anterior segment dysgenesis can be caused by both truncating and missense pathogenic variants, and the missense variants are located at the forkhead domain. In contrast, for CAKUT, there is no truncating pathogenic variant, and all variants except one are located outside the forkhead domain. CONCLUSION: We thereby expanded the phenotype of FOXC1 pathogenic variants toward involvement of CAKUT, which can potentially be explained by allelism.


Asunto(s)
Anomalías del Ojo , Sistema Urinario , Niño , Factores de Transcripción Forkhead/genética , Heterocigoto , Humanos , Riñón , Fenotipo
12.
Kidney Int ; 95(4): 914-928, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30773290

RESUMEN

Approximately 500 monogenic causes of chronic kidney disease (CKD) have been identified, mainly in pediatric populations. The frequency of monogenic causes among adults with CKD has been less extensively studied. To determine the likelihood of detecting monogenic causes of CKD in adults presenting to nephrology services in Ireland, we conducted whole exome sequencing (WES) in a multi-centre cohort of 114 families including 138 affected individuals with CKD. Affected adults were recruited from 78 families with a positive family history, 16 families with extra-renal features, and 20 families with neither a family history nor extra-renal features. We detected a pathogenic mutation in a known CKD gene in 42 of 114 families (37%). A monogenic cause was identified in 36% of affected families with a positive family history of CKD, 69% of those with extra-renal features, and only 15% of those without a family history or extra-renal features. There was no difference in the rate of genetic diagnosis in individuals with childhood versus adult onset CKD. Among the 42 families in whom a monogenic cause was identified, WES confirmed the clinical diagnosis in 17 (40%), corrected the clinical diagnosis in 9 (22%), and established a diagnosis for the first time in 16 families referred with CKD of unknown etiology (38%). In this multi-centre study of adults with CKD, a molecular genetic diagnosis was established in over one-third of families. In the evolving era of precision medicine, WES may be an important tool to identify the cause of CKD in adults.


Asunto(s)
Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Insuficiencia Renal Crónica/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Exoma/genética , Femenino , Humanos , Irlanda , Riñón , Masculino , Anamnesis , Persona de Mediana Edad , Mutación , Linaje , Medicina de Precisión , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/terapia , Adulto Joven
13.
Hum Genet ; 138(10): 1105-1115, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31230195

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease (~ 45%) that manifests before 30 years of age. The genetic locus containing COL4A1 (13q33-34) has been implicated in vesicoureteral reflux (VUR), but mutations in COL4A1 have not been reported in CAKUT. We hypothesized that COL4A1 mutations cause CAKUT in humans. We performed whole exome sequencing (WES) in 550 families with CAKUT. As negative control cohorts we used WES sequencing data from patients with nephronophthisis (NPHP) with no genetic cause identified (n = 257) and with nephrotic syndrome (NS) due to monogenic causes (n = 100). We identified a not previously reported heterozygous missense variant in COL4A1 in three siblings with isolated VUR. When examining 549 families with CAKUT, we identified nine additional different heterozygous missense mutations in COL4A1 in 11 individuals from 11 unrelated families with CAKUT, while no COL4A1 mutations were identified in a control cohort with NPHP and only one in the cohort with NS. Most individuals (12/14) had isolated CAKUT with no extrarenal features. The predominant phenotype was VUR (9/14). There were no clinical features of the COL4A1-related disorders (e.g., HANAC syndrome, porencephaly, tortuosity of retinal arteries). Whereas COL4A1-related disorders are typically caused by glycine substitutions in the collagenous domain (84.4% of variants), only one variant in our cohort is a glycine substitution within the collagenous domain (1/10). We identified heterozygous COL4A1 mutations as a potential novel autosomal dominant cause of CAKUT that is allelic to the established COL4A1-related disorders and predominantly caused by non-glycine substitutions.


Asunto(s)
Colágeno Tipo IV/genética , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/genética , Riñón/anomalías , Mutación , Fenotipo , Sistema Urinario/anomalías , Alelos , Sustitución de Aminoácidos , Biología Computacional/métodos , Análisis Mutacional de ADN , Bases de Datos Genéticas , Evolución Molecular , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Genómica/métodos , Heterocigoto , Humanos , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Masculino , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/genética , Navegador Web , Secuenciación del Exoma
14.
Biochem Biophys Res Commun ; 516(3): 812-818, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31256934

RESUMEN

Proteinuria is an important marker and is closely related to the progressive decline of renal function. Our previous research showed that angiopoietin-like-3 (ANGPTL3) plays a crucial role in proteinuria. In this study, we prepared an antibody against ANGPTL3 coil-coiled domain (ANGPTL3-CCD) and investigated the protective effect of anti-ANGPTL3-CCD antibody in mice with adriamycin-induced nephropathy. Nephropathy was established by adriamycin injection at a dose of 25 mg per kg in 8-12 week-old male mice in the ADR group. Blockade of ANGPTL3 by anti-ANGPTL3-CCD antibody (20 mg per kg) was performed every three days nine times after adriamycin injection in the ADR plus anti-angptl3-antibody group. The anti-ANGPTL3-CCD antibody can specifically recognize ANGPTL3. After anti-ANGPTL3-CCD antibody intervention, the urinary protein level in the ADR plus anti-angptl3-antibody group was significantly lower than that in the ADR group. Serum albumin was higher and triglyceride and total cholesterol were lower in the ADR plus anti-angptl3-antibody group than in the ADR group. The levels of serum creatinine did not significantly differ among the groups. Focal sclerotic glomeruli and podocyte foot processes extensive fusion were found in the renal tissue of the ADR group, whereas no sclerotic glomeruli and only partial fusion were found in the ADR plus anti-angptl3-antibody group. This study demonstrated that the anti-ANGPTL3-CCD antibody ameliorated proteinuria and podocyte dysfunction in adriamycin-induced nephropathy in mice.


Asunto(s)
Proteínas Similares a la Angiopoyetina/genética , Antiinflamatorios/farmacología , Anticuerpos/farmacología , Nefritis/tratamiento farmacológico , Proteinuria/tratamiento farmacológico , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/antagonistas & inhibidores , Proteínas Similares a la Angiopoyetina/metabolismo , Animales , Antiinflamatorios/aislamiento & purificación , Anticuerpos/aislamiento & purificación , Especificidad de Anticuerpos , Colesterol/sangre , Creatinina/sangre , Doxorrubicina/administración & dosificación , Expresión Génica/efectos de los fármacos , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Ratones , Nefritis/inducido químicamente , Nefritis/genética , Nefritis/patología , Dominios Proteicos , Proteinuria/inducido químicamente , Proteinuria/genética , Proteinuria/patología , Conejos , Albúmina Sérica/antagonistas & inhibidores , Albúmina Sérica/metabolismo , Resultado del Tratamiento , Triglicéridos/antagonistas & inhibidores , Triglicéridos/sangre
16.
BMC Nephrol ; 20(1): 185, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31126248

RESUMEN

BACKGROUND: Angiopoietin-like-3 (Angptl3) knockout is known for its protective effects on podocyte injury and proteinuria in the early stage of adriamycin (ADR) nephropathy. The current study re-evaluated the renoprotective effect of Angptl3 knockout in chronic ADR nephropathy and attempted to explore the mechanism underlying the effect associated with Angptl3 knockout in glomerulosclerosis. METHODS: B6; 129S5 mice were injected with ADR to induce nephropathy. Kidney structure and serum and urine parameters were observed during long-term follow-up. Cultured primary mouse podocytes were exposed to ADR and analyzed for the expression of some relative proteins. Podocyte loss was analyzed in both in vivo and in vitro experiments. RESULTS: Angptl3 knockout attenuated proteinuria and hypoproteinemia, protected renal structure and function, and improved the survival of mice over the whole process of ADR nephropathy. Furthermore, Angptl3 knockout reduced the numbers of the detached and apoptotic cells in the renal tissue and alleviated podocyte loss in mice with ADR chronic nephropathy, thereby, delaying the glomerulosclerosis formation. Additional results in vitro showed that Angptl3 knockout attenuated ADR-induced primary podocyte loss, including podocyte detachment and apoptosis. CONCLUSION: In addition to serving a renoprotective role in the early stage of ADR nephropathy, Angptl3 knockout contributed to disease amelioration throughout the ADR nephropathy process. Angptl3 knockout effectively delayed glomerulosclerosis formation by attenuating podocyte loss through rescuing podocytes from detachment and apoptosis. Angptl3 antagonists or inhibitors might have therapeutic potential in the occurrence and progression of nephropathy.


Asunto(s)
Proteínas Similares a la Angiopoyetina/deficiencia , Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/toxicidad , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Podocitos/metabolismo , Proteína 3 Similar a la Angiopoyetina , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Glomeruloesclerosis Focal y Segmentaria/patología , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Podocitos/patología , Podocitos/ultraestructura
17.
J Am Soc Nephrol ; 29(9): 2348-2361, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30143558

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of kidney disease in the first three decades of life. Previous gene panel studies showed monogenic causation in up to 12% of patients with CAKUT. METHODS: We applied whole-exome sequencing to analyze the genotypes of individuals from 232 families with CAKUT, evaluating for mutations in single genes known to cause human CAKUT and genes known to cause CAKUT in mice. In consanguineous or multiplex families, we additionally performed a search for novel monogenic causes of CAKUT. RESULTS: In 29 families (13%), we detected a causative mutation in a known gene for isolated or syndromic CAKUT that sufficiently explained the patient's CAKUT phenotype. In three families (1%), we detected a mutation in a gene reported to cause a phenocopy of CAKUT. In 15 of 155 families with isolated CAKUT, we detected deleterious mutations in syndromic CAKUT genes. Our additional search for novel monogenic causes of CAKUT in consanguineous and multiplex families revealed a potential single, novel monogenic CAKUT gene in 19 of 232 families (8%). CONCLUSIONS: We identified monogenic mutations in a known human CAKUT gene or CAKUT phenocopy gene as the cause of disease in 14% of the CAKUT families in this study. Whole-exome sequencing provides an etiologic diagnosis in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT.


Asunto(s)
Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/epidemiología , Linaje , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Animales , Humanos , Incidencia , Riñón/anomalías , Ratones , Fenotipo , Pronóstico , Medición de Riesgo , Sensibilidad y Especificidad , Distribución por Sexo , Sistema Urinario/anomalías , Anomalías Urogenitales/epidemiología , Reflujo Vesicoureteral/epidemiología
18.
BMC Nephrol ; 16: 38, 2015 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-25884163

RESUMEN

BACKGROUND: Podocyte detachment and apoptosis are two risk factors causing podocyte loss, F-actin rearrangement is involved in detachment and apoptosis. However, the nature of events that promote detachment and apoptosis of podocytes and whether detachment occurred simultaneously with apoptosis are still unclear. Previously, it was found that angiopoietin-like3 (Angptl3) induces F-actin rearrangement in podocytes. In this study we investigate whether Angptl3 influences podocyte loss (detachment and apoptosis) and the process through which Angptl3 exactly influenced the podocyte loss. METHODS: In conditionally immortalized mice podocytes, recombinant mice Angptl3 protein (rm-Angptl3) was used to mimic Angptl3 overexpression model and transfection with small interfering RNA (siRNA) to knockdown the expression of Angptl3. Both flow cytometry analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay were used to detect apoptosis. Rearrangement of F-actin was assessed using confocal microscopy. Western blot assay was used to measure levels of Angptl3, integrin α3ß1, integrin-linked kinase (ILK), p53, caspase 3, and phosphorylation of integrin ß1. RESULTS: In a puromycin aminonucleoside (PAN)-induced podocyte injury model, rm-Angptl3 accelerated the loss of podocytes, both detachment and apoptosis occurred, and F-actin rearrangement is involved in the process. However, knockdown of Angptl3 by siRNA markedly ameliorated these injuries. Observed effects were partially correlated with the altered integrin α3ß1, ILK and p53, rather than caspase 3. CONCLUSIONS: Angptl3 is a novel factor involved in the PAN-induced podocyte loss by affecting detachment and apoptosis in vitro. This study helps to deepen the understanding of the mechanisms of podocyte loss and lays the foundation for developing a new successful therapy for podocyte injury via lower expression of Angptl3.


Asunto(s)
Angiopoyetinas/metabolismo , Apoptosis/efectos de los fármacos , Podocitos/metabolismo , Puromicina Aminonucleósido/farmacología , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/genética , Animales , Biomarcadores/análisis , Western Blotting , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo/métodos , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Noqueados , Podocitos/citología , Podocitos/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Rol , Sensibilidad y Especificidad , Transfección
19.
Front Pediatr ; 11: 1113484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266537

RESUMEN

Background: Angiopoietin-like 3 (ANGPTL3) is a secretory glycoprotein. It has been demonstrated that ANGPTL3 level was upregulated in minimal change nephrotic syndrome (MCNS) kidney tissues. Subsequently, our group found that ANGPTL3 level was closely correlated with nephropathy in vivo and in vitro. Hence, whether ANGPTL3 level could be correlated with the proteinuria level, and assessment of disease severity of nephrotic syndrome (NS) remained to be investigated. This study aimed to analyzed the correlation between the levels of ANGPTL3 in serum and urine of patients with nephrotic syndrome and proteinuria, and assessed the severity of the patients' disease. In future clinical translation, the level of ANGPTL3 in serum, urine will be used as a biomarker to better predict the development of nephrotic syndrome. Methods: A total of 200 NS patients and 80 healthy controls (age, 1-18 years) were admitted to our institution between 2021 and 2022. The etiology of NS included primary nephrotic syndrome (PNS, n = 144) and NS with other causes (n = 56). A total of 280 serum samples and 244 urinary samples were collected to determine ANGPTL3 level using enzyme-linked immunosorbent assay (ELISA). Results: Serum ANGPTL3 and urinary ANGPTL3/Cre were remarkably elevated in NS patients compared with those in healthy controls. Furthermore, serum ANGPTL3 and urinary ANGPTL3/Cre were significantly correlated with proteinuria level. Additionally, multivariate linear regression analysis demonstrated that serum ALB was independently correlated with serum ANGPTL3 and PRO/CR was independently correlated with urinary ANGPTL3/Cre in NS patients. Conclusion: Serum ANGPTL3 and urinary ANGPTL3/Cre showed a promising performance in the diagnosis of NS, and served as novel potential noninvasive biomarkers to assess disease severity of NS. Further exploration of the role of ANGPTL3 level may shed a new light on the treatment of NS.

20.
Nephron ; 147(11): 685-692, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37499630

RESUMEN

INTRODUCTION: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first 3 decades of life. Over 40 genes have been identified as causative for isolated human CAKUT. However, many genes remain unknown, and the prioritization of potential CAKUT candidate genes is challenging. To develop an independent approach to prioritize CAKUT candidate genes, we hypothesized that monogenic CAKUT genes are most likely co-expressed along a temporal axis during kidney development and that genes with coinciding high expression may represent strong novel CAKUT candidate genes. METHODS: We analyzed single-cell mRNA (sc-mRNA) transcriptomics data of human fetal kidney for temporal sc-mRNA co-expression of 40 known CAKUT genes. A maximum of high expression in consecutive timepoints of kidney development was found for four of the 40 genes (EYA1, SIX1, SIX2, and ITGA8) in nephron progenitor cells a, b, c, d (NPCa-d). We concluded that NPCa-d are relevant for CAKUT pathogenesis and intersected two lists of CAKUT candidate genes resulting from unbiased whole-exome sequencing (WES) with the 100 highest expressed genes in NPCa-d. RESULTS: Intersection of the 100 highest expressed genes in NPCa-d with WES-derived CAKUT candidate genes identified an overlap with the candidate genes KIF19, TRIM36, USP35, CHTF18, in each of which a biallelic variant was detected in different families with CAKUT. CONCLUSION: Sc-mRNA expression data of human fetal kidney can be utilized to prioritize WES-derived CAKUT candidate genes. KIF19, TRIM36, USP35, and CHTF18 may represent strong novel candidate genes for CAKUT.


Asunto(s)
Transcriptoma , Sistema Urinario , Humanos , Riñón/anomalías , Sistema Urinario/anomalías , ARN Mensajero , Proteínas de Homeodominio , Endopeptidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA