RESUMEN
Phosphorus nutrition has been known for a long time to influence floral transition in plants, but the underlying mechanism is unclear. Arabidopsis phosphate transporter PHOSPHATE1 (PHO1) plays a critical role in phosphate translocation from roots to shoots, but whether and how it regulates floral transition is unknown. Here, we show that knockout mutation of PHO1 delays flowering under both long- and short-day conditions. The late flowering of pho1 mutants can be partially rescued by Pi supplementation in rosettes or shoot apices. Grafting assay indicates that the late flowering of pho1 mutants is a result of impaired phosphate translocation from roots to shoots. Knockout mutation of SPX1 and SPX2, two negative regulators of the phosphate starvation response, partially rescues the late flowering of pho1 mutants. PHO1 is epistatic to PHO2, a negative regulator of PHO1, in flowering time regulation. Loss of PHO1 represses the expression of some floral activators, including FT encoding florigen, and induces the expression of some floral repressors in shoots. Genetic analyses indicate that at least jasmonic acid signaling is partially responsible for the late flowering of pho1 mutants. In addition, we find that rice PHO1;2, the homolog of PHO1, plays a similar role in floral transition. These results suggest that PHO1 integrates phosphorus nutrition and flowering time, and could be used as a potential target in modulating phosphorus nutrition-mediated flowering time in plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Proteínas de Transporte de Fosfato , Fosfatos , Raíces de Plantas , Brotes de la Planta , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosfatos/metabolismo , Fosfatos/deficiencia , Flores/crecimiento & desarrollo , Flores/genética , Flores/fisiología , Flores/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Transporte BiológicoRESUMEN
Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.
Asunto(s)
Oryza , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Transcriptoma/genética , Nutrientes , Estrés Fisiológico/genética , Raíces de Plantas/metabolismoRESUMEN
Calcium/calmodulin signals are important for various cellular and physiological activities in plants. Calmodulin binding transcription activators also named Signal Responsive (SR) proteins belong to an important calcium/calmodulin-dependent transcription factor family that plays critical roles in stress responses. However, the role of SRs in abscisic acid (ABA) regulated plant responses to drought stress is largely unknown. Here, we characterized the role of Arabidopsis SR1 in drought stress tolerance and ABA response by analyzing the phenotypes of SR1 knockout and SR1-overexpression plants. sr1 mutants which accumulate salicylic acid (SA) were found more sensitive to drought stress and showed a higher water loss rate as compared with wild-type. By contrast, SR1-overexpression lines exhibited increased drought tolerance and less water loss than wild-type. Furthermore, sr1 mutants showed reduced ABA response in seed germination, root elongation, and stomatal closure, while SR1-overexpression lines displayed more sensitive to ABA than wild-type. In addition, the drought-sensitive and ABA-insensitive phenotypes of sr1 mutants were recovered by diminishing SA accumulation via knockouts of SA synthesizer ICS1 or activator PAD4, or through expression of SA-degrading enzyme NahG. Some drought/ABA-responsive genes exhibited differentially expressed in sr1 mutants and SR1-overexpression plants. These results suggest that SR1 plays a positive role in drought stress tolerance and ABA response, and drought/ABA responses are antagonized by SA accumulation that is negatively regulated by SR1.