RESUMEN
Cuproptosis, a recently identified form of copper-dependent cell death, shows promising tumor suppressive effects with minimal drug resistance. However, its therapeutic efficacy is hampered by its dependence on copper ions and the glutathione (GSH)-rich microenvironment in tumors. Here, we have developed polyvalent aptamer nanodrug conjugates (termed CuPEs@PApt) with a nucleosome-like structure to improve tumor cuproptosis therapy by exploiting mitochondrial copper overload and GSH depletion. Polyvalent aptamer (PApt), comprising polyvalent epithelial cell adhesion molecule aptamers for tumor targeting and repetitive PolyT sequences for copper chelation, facilitates efficient loading and targeted delivery of copper peroxide-Elesclomol nanodots (CuPEs). Upon internalization by tumor cells, Elesclomol released from CuPEs@PApt accumulates copper ions in mitochondria to initiate cuproptosis, while lysosomal degradation of CuP nanodots generates exogenous Cu2+ and H2O2, triggering a Fenton-like reaction for GSH depletion to enhance cuproptosis. In vitro and in vivo experiments confirm the efficacy of this strategy in inducing tumor cell cuproptosis and immunogenic cell death, the latter contributing to the activation of the antitumor immune response for synergistic tumor growth inhibition.
RESUMEN
Metal halide perovskite materials inherently possess imperfections, particularly under nonequilibrium conditions, such as exposure to light or heat. To tackle this challenge, we introduced stearate ligand-capped nickel oxide (NiOx), a redox-sensitive metal oxide with variable valence, into perovskite intermediate films. The integration of NiOx improved the efficiency and stability of perovskite solar cells (PSCs) by offering multifunctional roles: (1) chemical passivation for ongoing defect repair, (2) energetic passivation to bolster defect tolerance, and (3) field-effect passivation to mitigate charge accumulation. Employing a synergistic approach that tailored these three passivation mechanisms led to a substantial increase in the devices' efficiencies. The target cell (0.12 cm2) and module (18 cm2) exhibited efficiencies of 24.0 and 22.9%, respectively. Notably, the encapsulated modules maintained almost 100 and 87% of the initial efficiencies after operating for 1100 h at the maximum power point (60 °C, 50% RH) and 2000 h of damp-heat testing (85 °C, 85% RH), respectively. Outdoor real-time tests further validated the commercial viability of the NiOx-assisted PSMs. The proposed passivation strategy provides a practical and uncomplicated approach for fabricating high-efficiency and stable photovoltaics.
RESUMEN
Developing cost-effective metal electrodes is essential for reducing the overall cost of perovskite solar cells (PSCs). Although copper is highly conductive and economical, it is rarely used as a positive electrode in efficient n-i-p PSCs due to its unmatched Fermi level and low oxidation threshold. We report herein that modification for the inner surface of electrodes using mercaptopyridine-based molecules readily tunes the electronic and chemical properties of copper, which has been achieved by fine-tuning the substituents of mercaptopyridines. The systematic adjustment for the Fermi level and oxidation potential of copper facilitates interfacial hole extraction and enhances the oxidation resistance of copper electrodes, which enables pure copper electrodes to be used in high-performance n-i-p PSCs with different hole transport materials. The resulting PSCs with copper electrodes display excellent power conversion efficiency and long-term stability, even comparable to those of the gold electrodes, showing great potential in the manufacturing and commercialization of PSCs.
RESUMEN
Nickel acts as an essential trace nutrient or toxicant for organisms, depending on its concentration. The increased concentrations of nickel, due to anthropogenic activity, in the aquatic environment are potential threats to aquatic organisms. However, the knowledge on toxic mechanisms of nickel to microalgae remains incompletely understood. In the present study, we investigated the toxic effects of nickel in the cosmopolitan diatom Phaeodactylum tricornutum via evaluation of physiological and transcriptome responses. The results showed that the median effective concentration-72 h (EC50-72 h) and EC50-96 h of nickel was 2.48 ± 0.33 and 1.85 ± 0.17 mg/L, respectively. The P. tricornutum cell abundance and photosynthesis significantly decreased by 1 mg/L of nickel. Results from photosynthetic parameters including efficiency of the oxygen evolving complex (OEC) of photosystem II (PSII) (Fv/F0), maximum photosynthetic efficiency of PS II (Fv/Fm), electron transport rate (ETR), actual photosynthetic efficiency of PS II (Y(II)), non-photochemical quenching (NPQ), and photochemical quenching (qP) indicated that OEC of PS II might be impaired by nickel. The transcriptome data also reveal that OEC apparatus coding gene PS II oxygen-evolving enhancer protein 2 (PsbP) was regulated by nickel. Moreover, induced reactive oxygen species (ROS) production and chlorophyll a content were also detected under nickel stress. Transcriptome analysis revealed that nickel affected a variety of differentially expressed genes (DEGs) that involved in redox homeostasis, nitrogen metabolisms, fatty acids, and DNA metabolism. However, thiol-disulfide redox system might play important roles in nickel-induced oxidative stress resistance. This study improved the understanding of the toxic effect of nickel on the diatom P. tricornutum.
Asunto(s)
Diatomeas , Microalgas , Clorofila/metabolismo , Clorofila A/metabolismo , Clorofila A/farmacología , Diatomeas/fisiología , Níquel/metabolismo , Oxígeno/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema IIRESUMEN
Severe systemic inflammation following myocardial infarction (MI) is a major cause of patient mortality. MI-induced inflammation can trigger the production of free radicals, which in turn ultimately leads to increased inflammation in cardiac lesions (i.e., inflammation-free radicals cycle), resulting in heart failure and patient death. However, currently available anti-inflammatory drugs have limited efficacy due to their weak anti-inflammatory effect and poor accumulation at the cardiac site. Herein, a novel Fe-Cur@TA nanozyme is developed for targeted therapy of MI, which is generated by coordinating Fe3+ and anti-inflammatory drug curcumin (Cur) with further modification of tannic acid (TA). Such Fe-Cur@TA nanozyme exhibits excellent free radicals scavenging and anti-inflammatory properties by reducing immune cell infiltration, promoting macrophage polarization toward the M2-like phenotype, suppressing inflammatory cytokine secretion, and blocking the inflammatory free radicals cycle. Furthermore, due to the high affinity of TA for cardiac tissue, Fe-Cur@TA shows an almost tenfold greater in cardiac retention and uptake than Fe-Cur. In mouse and preclinical beagle dog MI models, Fe-Cur@TA nanozyme preserves cardiac function and reduces scar size, suggesting promising potential for clinical translation in cardiovascular disease.
Asunto(s)
Macrófagos , Infarto del Miocardio , Polifenoles , Humanos , Animales , Ratones , Perros , Macrófagos/metabolismo , Infarto del Miocardio/patología , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Radicales LibresRESUMEN
The Yangtze River Estuary (YRE) is one of the areas in China most severely affected by harmful algal blooms (HABs). This study explored the distributive patterns of HABs in the YRE and how they are influenced by the El Niño-Southern Oscillation (ENSO) and other environmental factors. Quantitative real-time PCR (qPCR) was employed to detect and quantify the four predominant HAB species in the YRE, Karenia mikimotoi, Margalefidinium polykrikoides, Prorocentrum donghaiense, and Heterosigma akashiwo. Additionally, the study analyzed how turbidity, pH, salinity, and temperature influence these algae. Distribution of the four HAB species in the YRE area shows clear geographical variations: K. mikimotoi is predominantly found in the northwest and central sea areas, M. polykrikoides (East Asian Ribotype, EAR) is mainly distributed in the southeastern part, P. donghaiense is abundant in the northern regions, and H. akashiwo is especially prevalent at stations S26 and S27 in the northeastern part of the study area. HABs dominated by H. akashiwo and P. donghaiense were observed in the northeastern sea area of the YRE on July 22, 2020. Our study reveals that K. mikimotoi, M. polykrikoides (EAR), and P. donghaiense are mainly affected by turbidity, pH, and salinity, while temperature predominantly influences the blooms of H. akashiwo. Moreover, runoff in the YRE has a certain correlation with ENSO events, which may also impact the nutrient content of the region. The findings of this study illustrate the distributive patterns of the four HAB species under various ecological conditions in the YRE and emphasize the importance of establishing practical cases for future warning systems. To better understand how climate change affects HABs, exploring the link between ENSO and HABs is essential.
Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Estuarios , Floraciones de Algas Nocivas , China , Ríos , Dinoflagelados , SalinidadRESUMEN
Disentangling microbial community diversity patterns and assembly mechanisms is critical for understanding ecological processes and evaluating biogeochemical cycling in ecosystems. However, the diversity patterns and assembly mechanism of the microbial communities in the epipelagic waters in the northeastern Indian Ocean (NEIO) on the spatial scale are still unclear. In this study, we investigated the spatial dynamics, geographic distribution pattern, and assembly process of the bacterial community using 532 samples collected from the epipelagic waters in the NEIO during the northeast monsoon. The results indicate that the bacterial richness and Bray-Curtis dissimilarity exhibited the strongest correlations with depth compared to the latitudinal and longitudinal scales. The dissolved oxygen was identified as the most important environmental factor affecting the bacterial richness and Bray-Curtis dissimilarity compared to temperature and salinity. The distance-decay relationship (DDR) of the bacterial community strengthened with increasing water depth. Turnover was the predominant ß-diversity component influencing the spatial changes in the whole bacterial community. The dispersal limitation of the stochastic process and homogeneous selection of the deterministic process governed the bacterial ecological assembly process of the whole bacterial community. Abundant and rare subcommunities differed in terms of the niche breath, composition changes. The abundant subcommunities exhibited a much wider niche breath than the rare subcommunities. Regarding the abundant subcommunity species changes, the contributions of the turnover and nestedness varied with the water depth and oceanic region. In contrast, turnover was the major ß-diversity component regarding the changes in the rare species. These data improve our understanding of the ecological processes of bacterial community assemblages in the NEIO.
Asunto(s)
Bacterias , Biodiversidad , Microbiota , Agua de Mar , Océano Índico , Agua de Mar/microbiología , Bacterias/clasificación , Salinidad , Monitoreo del Ambiente , Microbiología del Agua , EcosistemaRESUMEN
Nickel and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) are two environmental pollutants commonly and simultaneously present in aquatic systems. Nickel and BDE-47 are individually toxic to various aquatic organisms. However, their toxicity mechanisms are species-dependent, and the toxic effects of combined mixtures of BDE-47 and nickel have not yet been investigated. The present study investigated the toxic effects of combined mixtures of BDE-47 and nickel in the diatom Phaeodactylum tricornutum. BDE-47 and nickel mixtures significantly decreased cell abundance and photosynthetic efficiency, while these cells' reactive oxygen species (ROS) production significantly increased. The EC50-72 h for BDE-47 and mixtures of BDE-47 and nickel were 16.46 ± 0.93 and 1.35 ± 0.06 mg/L, respectively. Thus, combined mixtures of the two pollutants enhance their toxic effects. Interactions between BDE-47 and nickel were evaluated, revealing synergistic interactions that contributed to toxicity in P. tricornutum. Moreover, transcriptomic analyses revealed photosynthesis, nitrogen metabolism, the biosynthesis of amino acids, the biosynthesis of secondary metabolites, oxoacid metabolism, organic acid metabolism, carboxylic acid metabolism, and oxidation-reduction processes were considerably affected by the mixtures. This study provides evidence for the mechanisms of toxicity from combined BDE-47 and nickel exposure while also improving our understanding of the ecological risks of toxic chemicals on microalgae.
RESUMEN
Prorocentrum donghaiense Lu (also identified as Prorocentrum shikokuense Hada and Prorocentrum obtusidens Schiller) is a bloom-forming dinoflagellate species distributed worldwide. Blooms of P. donghaiense occur annually in adjacent waters of the East China Sea (ECS), especially in the waters near the Changjiang River Estuary. Blooms of this species have also been reported in nearby Japanese and Korean waters. There has been an apparent bloom-forming species succession pattern in the ECS since 2000, with diatom blooms in the early spring, shifting to long-lasting and large-scale dinoflagellate blooms dominated by P. donghaiense during the spring, and finally ended by diatom and/or Noctiluca scintillans blooms in summer. These bloom succession patterns were closely correlated with changes in environmental factors, such as temperature increase and anthropogenic eutrophication. Decreasing silicate by the construction of the Three Gorges Dam and increasing dissolved inorganic nitrogen flux were mainly influenced by high intensity human activities in the Changjiang River watershed, resulting in low Si/N ratio and high N/P ratios, possibly accelerating outbreak of P. donghaiense blooms. Phosphorous deficiency might be the most critical factor controlling the succession of microalgal blooms from diatoms to dinoflagellates. Prorocentrum donghaiense is a nontoxic species, but it can disrupt marine ecosystem by decreasing phytoplankton biodiversity and changing the structure of the food chain. Prorocentrum donghaiense blooms in the ECS have been intensively studied during the last two decades. Several possible mechanisms that contribute or trigger the annual blooms of this species have been proposed, but further research is required particularly on the aspect of nutrient budget, ecosystem impacts, as well as social-economic impact assessment.
Asunto(s)
Diatomeas , Dinoflagelados , Biodiversidad , Ecosistema , Fitoplancton , PrevalenciaRESUMEN
As a marine ichthyotoxic dinoflagellate, Margalefidinium polykrikoides, previously named Cochlodinium polykrikoides, have caused mass mortalities of fish worldwide during blooms. Rapid detection of target species is a prerequisite for the timely monitoring and early warning of harmful algal blooms (HABs). However, it is difficult to achieve rapid identification with traditional methods. The technology of using quantitative real-time PCR (qPCR) to detect and quantify microalgae is relatively mature. Based on the accuracy, rapidity, and sensitivity of qPCR technology, it can be used in the monitoring and development of early warning systems for HABs. From 2017 to 2020, samples were collected from 15 locations off the Chinese coast or from local sea areas. Based on the qPCR detection and analysis, the target species, M. polykrikoides (East Asian ribotype, EAr), was found in samples from Tianjin, Yangtze River estuary, and offshore Fujian (East China Sea). This is the first time that M. polykrikoides (EAr) was detected in the coastal waters of Tianjin. The results reveal a distributive pattern of M. polykrikoides (EAr) along Chinese coastal waters. It is helpful to predict the future diffusion trend of M. polykrikoides (EAr) in the China Sea and provides a practical case for the future construction of monitoring and warning systems for M. polykrikoides and HABs.
Asunto(s)
Dinoflagelados/aislamiento & purificación , China , Dinoflagelados/genética , Dinoflagelados/ultraestructura , Monitoreo del Ambiente , Estuarios , Floraciones de Algas Nocivas , Microscopía Electrónica de Rastreo , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Ribotipificación , Agua de MarRESUMEN
Power conversion efficiency (PCE) and long-term stability are two vital issues for perovskite solar cells (PSCs). However, there is still a lack of suitable hole transport layers (HTLs) to endow PSCs with both high efficiency and stability. Here, NiOx nanoparticles are promoted as an efficient and 85 °C/85%-stable inorganic HTL for high-performance n-i-p PSCs, with the introduction of perovskite quantum dots (QDs) between perovskite and NiOx as systematic interfacial engineering. The QD intercalation enhances film morphology and assembly regulation of NiOx HTLs . Due to structure-function correlations, hole mobility within NiOx HTL is improved. And the hole extraction from perovskite to NiOx is also facilitated, resulting from reduced trap states and optimized energy level alignments. Hence, the promoted NiOx -based n-i-p PSCs exhibit high PCE (21.59%) and excellent stability (sustaining 85 °C aging in air without encapsulation). Furthermore, encapsulated solar modules with QDs-promoted NiOx HTLs show impressive stability during 85 °C/85% aging test for 1000 hours. With high transparency, QDs-promoted NiOx is also demonstrated to be an advanced HTL for semitransparent PSCs. This work develops promising NiOx inorganic HTL in n-i-p PSCs for manufacturing next-generation photovoltaic devices.
RESUMEN
Occurrences of harmful algal blooms (HABs) and associated fisheries damage have been continuously monitored since the 1970s along the coasts of East Asia. Fisheries damage comprises mass mortalities of fish and shellfish mainly by harmful dinoflagellates and raphidophytes (e.g., Chattonella antiqua/marina, Cochlodinium polykrikoides and Karenia mikimotoi), and contamination of algal toxins in shellfish in particular Diarrhetic Shellfish Toxins by Dinophysis spp. and Paralytic Shellfish Toxins by Alexandrium spp. Shellfish mass mortalities due to Heterocapsa circularisquama in Hong Kong and western Japan, and fish kills by Karlodinium digitatum are unique incidents for this region, whereas C. antiqua/marina, C. polykrikoides and K. mikimotoi are common also in other regions. Time series data showed that the highest bloom numbers were recorded in 1980 (Japan), in 1998 (Korea) and in 2003 (China), followed by decreasing trends in these countries. These data suggest a shift in microalgal species composition, from dominance by diatoms to dinoflagellates after 1980s in Korea, and from diatoms to small haptophytes and cyanobacteria after 2013 in eastern Russia. HAB species composition and the changes were compared among countries, for better understanding on current status and trend of HAB species in East Asia.
Asunto(s)
Explotaciones Pesqueras , Floraciones de Algas Nocivas , Animales , China , Asia Oriental , Hong Kong , Japón , República de Corea , Federación de RusiaRESUMEN
Prorocentrum obtusidens Schiller (formerly P. donghaiense Lu), a harmful algal species common in the East China Sea (ECS), often thrives with the depletion of phosphate. Three cruises in the spring of 2013 sampled an entire P. obtusidens bloom process to investigate the dynamics of alkaline phosphatase activity (APA) and phosphorus (P) status of the bloom species using both bulk and cell-specific assays. Unlike previous studies, the bloom of P. obtusidens occurred in a phosphate replete environment. Very high APA, with an average of 76.62 ± 90.24 nmol L-1 h-1, was observed during the early-bloom phase, a value comparable to that in low phosphate environments. The alkaline phosphatase (AP) hydrolytic kinetics also suggested a more efficient AP system with a lower half-saturation constant (Ks), but higher maximum potential hydrolytic velocity (Vmax) in this period. The APA decreased significantly with an average of 24.98 ± 30.98 nmol L-1 h-1 when the bloom reached its peak. The lack of a correlation between dissolved inorganic phosphate (DIP) or dissolved organic phosphate (DOP) concentration and APA suggested that the APA was regulated by the internal P growth demand, rather than the external P availability during the phosphate replete P. obtusidens bloom. These findings facilitate an understanding of the P. obtusidens acclimation strategy with respect to P variations in terms of AP expression during blooms in the ECS.
Asunto(s)
Dinoflagelados , Fosfatasa Alcalina , China , Organofosfatos , FosfatosRESUMEN
The ability of abscisic acid (ABA) to modulate positive interactions between Arabidopsis thaliana individuals under salinity stress was investigated using abi1-1 (insensitive to ABA), era1-2 (hypersensitive to ABA) mutant and wild type plants. The results showed that sensitivity to ABA affects relative interaction intensity (RII) between Arabidopsis thaliana individuals. The neighbor removal experiments also confirmed the role of phenotypic responses in linking plant-plant interactions and sensitivity to ABA. For abi1-1 mutants, the absolute value differences between neighbor removal and control of stem length, root length, leaf area, leaf thickness, flower density, above biomass/belowground biomass (A/U), photosynthetic rate, stomatal conductance, leaf water content and water-use efficiency were smaller than those of the wild type, while for era1-2 mutants, these absolute value differences were larger than those of the wild type. Thus, it is suggested that positive interactions between Arabidopsis thaliana individuals are at least partly modulated by different sensitivity to ABA through different physiological and phenotypic plasticity.
Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Análisis de Varianza , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Genotipo , Mutación/genética , Fotosíntesis/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Salinidad , Estrés Fisiológico/efectos de los fármacos , Agua/fisiologíaRESUMEN
Debate continues in theoretical ecology over whether and why the scaling exponent of biomass-density (M-N) relationship varies along environmental gradients. By developing a novel geometric model with assumptions of allometric growth at the individual level and open canopy at the stand level, we propose that plant height-crown radius and canopy coverage-density relationships determine the above-ground M-N relationship in stressful environments. Results from field investigation along an aridity gradient (from eastern to western China) confirmed our model prediction and showed that the above-ground M-N scaling exponent increased with drought stress. Therefore, the 'universal' scaling exponents (-3/2 or -4/3) of the M-N relationship predicted by previous models may not hold for above-ground parts in stressful environments.
Asunto(s)
Biomasa , Hojas de la Planta/fisiología , Algoritmos , China , Ecosistema , Ambiente , Geografía , Modelos Biológicos , Modelos Estadísticos , Modelos Teóricos , Filogenia , Hojas de la Planta/anatomía & histología , TemperaturaRESUMEN
Azaspiracids (AZA) are novel lipophilic polyether marine biotoxins associated with azaspiracid shellfish poisoning (AZP). Azaspiracid-59 (AZA-59) is a new AZA that was recently detected in strains of Azadinium poporum from Puget Sound, Washington State. In order to understand how environmental factors affect AZA abundances in Puget Sound, a laboratory experiment was conducted with two local strains of A. poporum to estimate the growth rate and AZA-59 (both intra- and extracellular) cell quotas along temperature and salinity gradients. Both strains of A. poporum grew across a wide range of temperatures (6.7 °C to 25.0 °C), and salinities (15 to 35). Growth rates increased with increasing temperature up to 20.0 °C, with a range from 0.10 d-1 to 0.42 d-1. Both strains of A. poporum showed variable growth rates from 0.26 d-1 to 0.38 d-1 at salinities from 15 to 35. The percentage of intracellular AZA-59 in both strains was generally higher in exponential than in stationary phase along temperature and salinity gradients, indicating higher retention of toxin in actively growing cells. Cellular toxin quotas varied by strain in both the temperature and salinity treatments but were highest at the lowest growth rates, especially for the faster growing strain, NWFSC1011. Consistent with laboratory experiments, field investigations in Sequim Bay, WA, during 2016-2018 showed that A. poporum was detected when salinity and temperature became favorable to higher growth rates in June and July. Although current field data of A. poporum in Puget Sound indicate a generally low abundance, the potential of local A. poporum to adapt to and grow in a wide range of temperature and salinity may open future windows for blooms. Although increased temperatures, anticipated for the Puget Sound region over the next decades, will enhance the growth of A. poporum, these higher temperatures will not necessarily support higher toxin cell quotas. Additional sampling and assessment of the total toxicity of AZA-59 will provide the basis for a more accurate estimation of risk for azaspiracid poisoning in Puget Sound shellfish.
Asunto(s)
Toxinas Marinas , Salinidad , Compuestos de Espiro , Temperatura , WashingtónRESUMEN
Recent molecular phylogenetic studies of Gambierdiscus species flagged several new species and genotypes, thus leading to revitalizing its systematics. The inter-relationships of clades revealed by the primary sequence information of nuclear ribosomal genes (rDNA), however, can sometimes be equivocal, and therefore, in this study, the taxonomic status of a ribotype, Gambierdiscus sp. type 6, was evaluated using specimens collected from the original locality, Marakei Island, Republic of Kiribati; and specimens found in Rawa Island, Peninsular Malaysia, were further used for comparison. Morphologically, the ribotype cells resembled G. scabrosus, G. belizeanus, G. balechii, G. cheloniae and G. lapillus in thecal ornamentation, where the thecal surfaces are reticulate-foveated, but differed from G. scabrosus by its hatchet-shaped Plate 2', and G. belizeanus by the asymmetrical Plate 3'. To identify the phylogenetic relationship of this ribotype, a large dataset of the large subunit (LSU) and small subunit (SSU) rDNAs were compiled, and performed comprehensive analyses, using Bayesian-inference, maximum-parsimony, and maximum-likelihood, for the latter two incorporating the sequence-structure information of the SSU rDNA. Both the LSU and SSU rDNA phylogenetic trees displayed an identical topology and supported the hypothesis that the relationship between Gambierdiscus sp. type 6 and G. balechii was monophyletic. As a result, the taxonomic status of Gambierdiscus sp. type 6 was revised, and assigned as Gambierdiscus balechii. Toxicity analysis using neuroblastoma N2A assay confirmed that the Central Pacific strains were toxic, ranging from 1.1 to 19.9 fg P-CTX-1 eq cell-1, but no toxicity was detected in a Western Pacific strain. This suggested that the species might be one of the species contributing to the high incidence rate of ciguatera fish poisoning in Marakei Island.
Asunto(s)
Ciguatoxinas/toxicidad , Dinoflagelados/clasificación , Filogenia , Filogeografía , Secuencia de Bases , Tamaño de la Célula , ADN Ribosómico/química , ADN Ribosómico/genética , Dinoflagelados/citología , Dinoflagelados/ultraestructura , Funciones de Verosimilitud , Conformación de Ácido NucleicoRESUMEN
During the last two decades, large-scale high biomass algal blooms of the dinoflagellate Prorocentrum donghaiense Lu have occurred frequently in the East China Sea (ECS). The role of increasing nutrient concentrations in driving those blooms is well-established, but the source population that initiates them is poorly understood. We hypothesized that the front of Taiwan Warm Current (TWC) may serve as a 'seed bank' that initiates P. donghaiense blooms in the ECS, as the physiochemical conditions in the TWC are suitable for the growth of P. donghaiense. In order to test this hypothesis, two surveys at different spatio-temporal scales were conducted in 2010 and 2011. We found a strong correlation in space and time between the abundance of P. donghaiense and the TWC. The spatial extent of the P. donghaiense bloom coincided with the TWC front in both 2010 and 2011. During the early development of the blooms, P. donghaiense concentration was highest at the TWC front, and then the bloom mass shifted inshore over the course of our 2011 survey. The TWC also moved inshore, albeit after the appearance of P. donghaiense. Overall, these results support our hypothesis that P. donghaiense blooms develop from the population at the TWC front in the ECS, suggesting the role of the ocean current front as a seed bank to dinoflagellate blooms.