Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dalton Trans ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38915272

RESUMEN

This study investigated a novel electrocatalyst with a core-shell structure of CoNiP@N,P-C. The unique carbon shell of this catalyst serves a dual purpose: exposing numerous active sites and safeguarding CoNiP nanoparticles from dissolution caused by the electrolyte. As a result, the CoNiP@N,P-C nanoparticles exhibit exceptional electrochemical properties. The CoNiP@N,P-C catalyst displays overpotentials of 234 and 314 mV for the HER and OER, respectively, within a simulated seawater solution (1 M KOH + 0.5 M NaCl), indicating its outstanding catalytic performance. Moreover, when subjected to full seawater splitting, the CoNiP@N,P-C catalyst exhibited high activity, achieving a 1.71 V cell voltage at a current density of 10 mA cm-2. As revealed by density functional theory (DFT) calculations, the CoNiP@N,P-C catalyst exhibits Gibbs free energy for hydrogen adsorption (ΔGH* = -0.19 eV) that is decreased in comparison with CoP@N,P-C, NiP@N,P-C, and N,P-C (-0.321 eV, -0.434 eV, and 0.723 eV, respectively). This finding confirms that the core-shell structure plays a role in enhancing the HER kinetics and improving the catalytic performance, which is consistent with the experimental observations. Consequently, this study introduces the concept of utilizing bimetal phosphide core-shell structures for overall seawater splitting, offering a novel approach in this field of research.

2.
J Chromatogr A ; 1721: 464833, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38555828

RESUMEN

A 3 µm undecylenic acid-functionalized stationary phase (UAS) was prepared for the separation of nucleosides and nucleobases using per aqueous liquid chromatography (PALC) and hydrophilic interaction liquid chromatography (HILIC). The retention behaviors of nucleosides and nucleobases in PALC and HILIC modes were explored by adjusting parameters such as water content, buffer concentration, pH of the mobile phase and column temperature. The experimental data and separation chromatogram demonstrated that PALC could provide retention comparable to that of HILIC for nucleosides and nucleobases. Comparative studies using diluted adenosine solutions evaluated theoretical plates and peak shape for the same retention factors (between 0.25 and 5.0) in PALC and HILIC. There was no buffer component in the mobile phases used to operate the comparisons. HILIC mode is more efficient for adenosine than PALC mode at low retention factors. It's the exact opposite phenomenon for high retention factors. It is proposed that the mass transfer of adenosine between the UAS, the water-rich layer and the ACN-rich mobile phase in HILIC is relatively slow. Given the significant use of toxic ACN in HILIC, PALC emerges as a safer and more effective alternative for separating nucleosides and nucleobases.


Asunto(s)
Nucleósidos , Dióxido de Silicio , Ácidos Undecilénicos , Dióxido de Silicio/química , Cromatografía Liquida/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Agua/química , Indicadores y Reactivos , Adenosina
3.
RSC Adv ; 9(23): 13159-13167, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35520805

RESUMEN

An azide-modified long perfluorinated tail quaternary ammonium methacrylate compound (M2) was designed and synthesized. The fluorine containing polyurethane (PU-F) with strong antibacterial properties was prepared via click reaction of M2 and a clickable polymer (PU-Al), which exhibited surface segregation. The PU-F film showed a total kill against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) at an M2 content around 1 wt%. A disk diffusion test confirmed that the ligation efficiency of the antibacterial agents and polymer chains via click chemistry was excellent, and covalent conjugation of the QACs to the polymers prevented leaching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA