Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 50(13): 6948-56, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27268262

RESUMEN

Pu(IV) and Pu(V) sorption to goethite was investigated over a concentration range of 10(-15)-10(-5) M at pH 8. Experiments with initial Pu concentrations of 10(-15) - 10(-8) M produced linear Pu sorption isotherms, demonstrating that Pu sorption to goethite is not concentration-dependent across this concentration range. Equivalent Pu(IV) and Pu(V) sorption Kd values obtained at 1 and 2-week sampling time points indicated that Pu(V) is rapidly reduced to Pu(IV) on the goethite surface. Further, it suggested that Pu surface redox transformations are sufficiently rapid to achieve an equilibrium state within 1 week, regardless of the initial Pu oxidation state. At initial concentrations >10(-8) M, both Pu oxidation states exhibited deviations from linear sorption behavior and less Pu was adsorbed than at lower concentrations. NanoSIMS and HRTEM analysis of samples with initial Pu concentrations of 10(-8) - 10(-6) M indicated that Pu surface and/or bulk precipitation was likely responsible for this deviation. In 10(-6) M Pu(IV) and Pu(V) samples, HRTEM analysis showed the formation of a body centered cubic (bcc) Pu4O7 structure on the goethite surface, confirming that reduction of Pu(V) had occurred on the mineral surface and that epitaxial distortion previously observed for Pu(IV) sorption occurs with Pu(V) as well.


Asunto(s)
Oxidación-Reducción , Plutonio/química , Adsorción
2.
J Environ Radioact ; 237: 106700, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34293717

RESUMEN

Above-ground nuclear explosions that interact with the surface of the earth entrain materials from the surrounding environment, influencing the resulting physical and chemical evolution of the fireball, which can affect the final chemical phase and mobility of hazardous radionuclides that are dispersed in the environment as fallout particles. The interaction of iron with a nuclear explosion is of specific interest due to the potential for iron to act as a redox buffer and because of the likelihood of significant masses of metals to be present in urban environments. We investigated fallout from a historic surface interacting nuclear explosion conducted on a steel tower and report the discovery of widespread and diverse iron-rich micro-structures preserved within the samples, including crystalline dendrites and micron-scale iron-rich spheres with liquid immiscibility textures. We assert these micro-structures reflect local redox conditions and cooling rates and can inform interpretation of high temperature events, enabling new insights into fireball condensation physics and chemistry when metals from the local environment (i.e. structural steel) are vaporized or entrained. These observations also significantly expand the availability of silicate immiscibility datasets applicable to rapidly quenched systems such as meteorite impact melt glass.


Asunto(s)
Hierro , Monitoreo de Radiación , Radioisótopos/análisis , Silicatos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA