Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Curr Genet ; 65(4): 965-980, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30848345

RESUMEN

Botcinic acid is a phytotoxic polyketide involved in the virulence of the gray mold fungus Botrytis cinerea. Here, we aimed to investigate the specific regulation of the cluster of Bcboa genes that is responsible for its biosynthesis. Our analysis showed that this cluster is located in a subtelomeric genomic region containing alternating G + C/A + T-balanced regions, and A + T-rich regions made from transposable elements that underwent RIP (Repeat-Induced Point mutation). Genetic analyses demonstrated that BcBoa13, a putative Zn2Cys6 transcription factor, is a nuclear protein with a major positive regulatory role on the expression of other Bcboa1-to-Bcboa12 genes, and botcinic acid production. In conclusion, the structure and the regulation of the botcinic acid gene cluster show similar features with the cluster responsible for the biosynthesis of the other known phytotoxin produced by B. cinerea, i.e., the sesquiterpene botrydial. Both clusters contain a gene encoding a pathway-specific Zn2Cys6 positive regulator, and both are surrounded by relics of transposons which raise some questions about the role of these repeated elements in the evolution and regulation of the secondary metabolism gene clusters in Botrytis.


Asunto(s)
Botrytis/genética , Enfermedades de las Plantas/genética , Policétidos/metabolismo , Factores de Transcripción/genética , Elementos Transponibles de ADN/genética , Regulación Fúngica de la Expresión Génica , Familia de Multigenes/genética , Enfermedades de las Plantas/microbiología , Mutación Puntual , Zinc/química
2.
Environ Microbiol ; 20(7): 2469-2482, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29708647

RESUMEN

While abscisic acid (ABA) is known as a hormone produced by plants through the carotenoid pathway, a small number of phytopathogenic fungi are also able to produce this sesquiterpene but they use a distinct pathway that starts with the cyclization of farnesyl diphosphate (FPP) into 2Z,4E-α-ionylideneethane which is then subjected to several oxidation steps. To identify the sesquiterpene cyclase (STC) responsible for the biosynthesis of ABA in fungi, we conducted a genomic approach in Botrytis cinerea. The genome of the ABA-overproducing strain ATCC58025 was fully sequenced and five STC-coding genes were identified. Among them, Bcstc5 exhibits an expression profile concomitant with ABA production. Gene inactivation, complementation and chemical analysis demonstrated that BcStc5/BcAba5 is the key enzyme responsible for the key step of ABA biosynthesis in fungi. Unlike what is observed for most of the fungal secondary metabolism genes, the key enzyme-coding gene Bcstc5/Bcaba5 is not clustered with the other biosynthetic genes, i.e., Bcaba1 to Bcaba4 that are responsible for the oxidative transformation of 2Z,4E-α-ionylideneethane. Finally, our study revealed that the presence of the Bcaba genes among Botrytis species is rare and that the majority of them do not possess the ability to produce ABA.


Asunto(s)
Ácido Abscísico/biosíntesis , Botrytis/metabolismo , Liasas de Carbono-Carbono/metabolismo , Ácido Abscísico/análogos & derivados , Secuencia de Bases , Botrytis/enzimología , Botrytis/genética , Carotenoides/metabolismo , Genes Fúngicos , Oxidación-Reducción , Fosfatos de Poliisoprenilo/metabolismo , Sesquiterpenos/metabolismo
3.
Fungal Genet Biol ; 96: 33-46, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27721016

RESUMEN

Botrydial (BOT) is a non-host specific phytotoxin produced by the polyphagous phytopathogenic fungus Botrytis cinerea. The genomic region of the BOT biosynthetic gene cluster was investigated and revealed two additional genes named Bcbot6 and Bcbot7. Analysis revealed that the G+C/A+T-equilibrated regions that contain the Bcbot genes alternate with A+T-rich regions made of relics of transposable elements that have undergone repeat-induced point mutations (RIP). Furthermore, BcBot6, a Zn(II)2Cys6 putative transcription factor was identified as a nuclear protein and the major positive regulator of BOT biosynthesis. In addition, the phenotype of the ΔBcbot6 mutant indicated that BcBot6 and therefore BOT are dispensable for the development, pathogenicity and response to abiotic stresses in the B. cinerea strain B05.10. Finally, our data revealed that B. pseudocinerea, that is also polyphagous and lives in sympatry with B. cinerea, lacks the ability to produce BOT. Identification of BcBot6 as the major regulator of BOT synthesis is the first step towards a comprehensive understanding of the complete regulation network of BOT synthesis and of its ecological role in the B. cinerea life cycle.


Asunto(s)
Aldehídos/metabolismo , Botrytis/genética , Compuestos Bicíclicos con Puentes/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Factores de Transcripción/metabolismo , Secuencia Rica en At , Botrytis/metabolismo , Botrytis/patogenicidad , Elementos Transponibles de ADN , ADN de Hongos , Proteínas Fúngicas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Virulencia
4.
Mol Plant Microbe Interact ; 28(6): 659-74, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25625818

RESUMEN

Botrytis cinerea, the gray mold fungus, is an important plant pathogen. Field populations are characterized by variability with regard to morphology, the mode of reproduction (conidiation or sclerotia formation), the spectrum of secondary metabolites (SM), and virulence. Natural variation in bcvel1 encoding the ortholog of Aspergillus nidulans VeA, a member of the VELVET complex, was previously shown to affect light-dependent differentiation, the formation of oxalic acid (OA), and virulence. To gain broader insight into the B. cinerea VELVET complex, an ortholog of A. nidulans LaeA, BcLAE1, a putative interaction partner of BcVEL1, was studied. BcVEL1 but not its truncated versions interacts with BcLAE1 and BcVEL2 (VelB ortholog). In accordance with the expected common as well as specific functions of BcVEL1 and BcLAE1, the deletions of both genes result in similar though not identical phenotypes. Both mutants lost the ability to produce OA, to colonize the host tissue, and to form sclerotia. However, mutants differ with regard to aerial hyphae and conidia formation. Genome-wide expression analyses revealed that BcVEL1 and BcLAE1 have common and distinct target genes. Some of the genes that are underexpressed in both mutants, e.g., those encoding SM-related enzymes, proteases, and carbohydrate-active enzymes, may account for their reduced virulence.


Asunto(s)
Botrytis , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos , Phaseolus/microbiología , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Aspergillus nidulans/genética , Botrytis/genética , Botrytis/metabolismo , Botrytis/patogenicidad , Frutas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Hifa , Luz , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Hojas de la Planta/microbiología , Metabolismo Secundario , Eliminación de Secuencia , Esporas Fúngicas , Técnicas del Sistema de Dos Híbridos , Virulencia
5.
Mol Plant Microbe Interact ; 28(11): 1167-80, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26267356

RESUMEN

Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea, while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infection process developed by B. cinerea on MB versus VB, and the plant defense mechanisms deployed to stop the fungus spreading. On the pathogen side, our genome-wide transcriptomic data revealed that B. cinerea genes upregulated during infection of MB are enriched in functional categories related to necrotrophy, such as degradation of the plant cell wall, proteolysis, membrane transport, reactive oxygen species (ROS) generation, and detoxification. Quantitative-polymerase chain reaction on a set of representative genes related to virulence and microscopic observations further demonstrated that the infection is also initiated on VB but is stopped at the penetration stage. On the plant side, genome-wide transcriptomic analysis and metabolic data revealed a defense pathway switch during berry ripening. In response to B. cinerea inoculation, VB activated a burst of ROS, the salicylate-dependent defense pathway, the synthesis of the resveratrol phytoalexin, and cell-wall strengthening. On the contrary, in infected MB, the jasmonate-dependent pathway was activated, which did not stop the fungal necrotrophic process.


Asunto(s)
Botrytis/genética , Resistencia a la Enfermedad/genética , Frutas/genética , Enfermedades de las Plantas/genética , Vitis/genética , Botrytis/patogenicidad , Pared Celular/genética , Pared Celular/metabolismo , Pared Celular/microbiología , Ciclopentanos/metabolismo , Frutas/crecimiento & desarrollo , Frutas/microbiología , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Interacciones Huésped-Patógeno/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Resveratrol , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salicilatos/metabolismo , Sesquiterpenos/metabolismo , Estilbenos/metabolismo , Virulencia/genética , Vitis/crecimiento & desarrollo , Vitis/microbiología , Fitoalexinas
6.
Nucleic Acids Res ; 41(10): 5303-20, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23563155

RESUMEN

Bacillus subtilis has two replicative DNA polymerases. PolC is a processive high-fidelity replicative polymerase, while the error-prone DnaEBs extends RNA primers before hand-off to PolC at the lagging strand. We show that DnaEBs interacts with the replicative helicase DnaC and primase DnaG in a ternary complex. We characterize their activities and analyse the functional significance of their interactions using primase, helicase and primer extension assays, and a 'stripped down' reconstituted coupled assay to investigate the coordinated displacement of the parental duplex DNA at a replication fork, synthesis of RNA primers along the lagging strand and hand-off to DnaEBs. The DnaG-DnaEBs hand-off takes place after de novo polymerization of only two ribonucleotides by DnaG, and does not require other replication proteins. Furthermore, the fidelity of DnaEBs is improved by DnaC and DnaG, likely via allosteric effects induced by direct protein-protein interactions that lower the efficiency of nucleotide mis-incorporations and/or the efficiency of extension of mis-aligned primers in the catalytic site of DnaEBs. We conclude that de novo RNA primer synthesis by DnaG and initial primer extension by DnaEBs are carried out by a lagging strand-specific subcomplex comprising DnaG, DnaEBs and DnaC, which stimulates chromosomal replication with enhanced fidelity.


Asunto(s)
Bacillus subtilis/enzimología , ADN Helicasas/metabolismo , ADN Polimerasa III/metabolismo , ADN Primasa/metabolismo , Replicación del ADN , Bacillus subtilis/genética , ADN Polimerasa III/química , ADN Primasa/química , Modelos Moleculares , ARN/biosíntesis
7.
Fungal Genet Biol ; 52: 9-19, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23396263

RESUMEN

Botrytis cinerea, the grey mould fungus, secretes non-host-specific phytotoxins that kill the cells of many plant species. Phytotoxic assays performed about ten years ago, have highlighted the role in the infection mechanism of one of these secondary metabolites, the sesquiterpene botrydial. We recently showed that BcBOT1 to BcBOT5 genes, which are required for botrydial biosynthesis, are organised into a physical cluster. However, this cluster includes no gene encoding a transcription factor (TF) that might specifically coregulate the expression of BcBOT genes. To identify which TF(s) are implicated in the regulation of this cluster and thereby to decipher DNA-protein interactions in the phytopathogenic fungus B. cinerea, we developed a strategy based on the yeast one-hybrid (Y1H) method. In this study, a Y1H library was generated with the TFs predicted from complete genome sequencing. The screening of this library revealed an interaction between a promoter of the botrydial biosynthesis gene cluster and a new Cys2His2 zinc finger TF, that we called BcYOH1. Inactivation of the BcYOH1 gene and expression analyses demonstrated the involvement of this TF in regulating expression of the botrydial biosynthesis gene cluster. Furthermore, whole-transcriptome analysis suggested that BcYOH1 might act as a global transcriptional regulator of phytotoxin and other secondary metabolism gene clusters, and of genes involved in carbohydrate metabolism, transport, virulence and detoxification mechanisms.


Asunto(s)
Botrytis/genética , Familia de Multigenes , Micotoxinas/genética , Factores de Transcripción/genética , Botrytis/metabolismo , Botrytis/patogenicidad , Mapeo Cromosómico , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Factores de Transcripción/aislamiento & purificación
8.
Mol Microbiol ; 80(4): 1062-74, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21435031

RESUMEN

In eubacteria, the post-transcriptional modification of the wobble cytidine of the CAU anticodon in a precursor tRNA(Ile2) to a lysidine residue (2-lysyl-cytidine, abbreviated as L) allows the amino acid specificity to change from methionine to isoleucine and the codon decoding specificity to shift from AUG to AUA. The tilS gene encoding the enzyme that catalyses this modification is widely distributed. However, some microbial species lack a tilS gene, indicating that an alternative strategy exists to accurately translate the AUA codon into Ile. To determine whether a TilS-dependent bacterium, such as Bacillus subtilis, can overcome the absence of lysidine in its tRNA(Ile2) (CAU), we analysed the suppressor mutants of a tilS-thermosensitive allele. These tilS-suppressor mutants carry a substitution of the wobble guanosine into thymidine in one of the tRNA(Ile1) genes (the original GAT anticodon is changed to a TAT). In absence of TilS activity, the AUA codons are translated into isoleucine by the suppressor tRNA(Ile1), although a low level of AUA codons is also mistranslated into methionine. Results are in agreement with rare cases of eubacteria (and archaea), which naturally lack the tilS gene (or tiaS in archaea) but contain a tRNA(Ile2) gene containing a TAT instead of a CAT anticodon.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Bacillus subtilis/enzimología , ARN de Transferencia/genética , Sustitución de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Anticodón/genética , Bacillus subtilis/genética , Calor , Lisina/análogos & derivados , Lisina/química , Lisina/genética , Biosíntesis de Proteínas/genética , Nucleósidos de Pirimidina/química , Nucleósidos de Pirimidina/genética , Supresión Genética
9.
ACS Chem Biol ; 11(10): 2838-2846, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27529428

RESUMEN

Over two hundred species of plants can be infected by the phytopathogenic fungus Botrytis cinerea under a range of different environmental conditions. In response to these, the fungus produces unique terpenoid and polyketide metabolites. Parts of the plants may be killed by the phytotoxin botrydial, enabling the fungus to feed on the dead cells. In this paper, we describe the genetic and molecular basis of botrydial biosynthesis and the function of the five genes of the genome of B. cinerea that together constitute the botrydial biosynthetic gene cluster. Genes BcBOT3 and BcBOT4, encoding two cytochrome P450 monooxygenases, were inactivated by homologous recombination and were shown to catalyze regio- and stereospecific hydroxylations at the carbons C-10 and C-4, respectively, of the presilphiperfolan-8ß-ol skeleton. The null mutants, bcbot3Δ and bcbot4Δ, accumulated key intermediates in the botrydial biosynthesis enabling the complete genetic and molecular basis of the botrydial biosynthetic pathway to be established. Furthermore, the bcbot4Δ mutant overproduced a significant number of polyketides, which included, in addition to known botcinins, botrylactones and cinbotolide A, two new botrylactones and two new cinbotolides, cinbotolides B and C.


Asunto(s)
Aldehídos/metabolismo , Botrytis/genética , Compuestos Bicíclicos con Puentes/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Espectroscopía de Resonancia Magnética con Carbono-13 , Cromatografía de Gases y Espectrometría de Masas , Genes Fúngicos , Policétidos/metabolismo , Espectroscopía de Protones por Resonancia Magnética
10.
Mol Plant Pathol ; 12(6): 564-79, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21722295

RESUMEN

The grey mould fungus Botrytis cinerea produces two major phytotoxins, the sesquiterpene botrydial, for which the biosynthesis gene cluster has been characterized previously, and the polyketide botcinic acid. We have identified two polyketide synthase (PKS) encoding genes, BcPKS6 and BcPKS9, that are up-regulated during tomato leaf infection. Gene inactivation and analysis of the secondary metabolite spectra of several independent mutants demonstrated that both BcPKS6 and BcPKS9 are key enzymes for botcinic acid biosynthesis. We showed that BcPKS6 and BcPKS9 genes, renamed BcBOA6 and BcBO9 (for B. cinerea botcinic acid biosynthesis), are located at different genomic loci, each being adjacent to other putative botcinic acid biosynthetic genes, named BcBOA1 to BcBOA17. Putative orthologues of BcBOA genes are present in the closely related fungus Sclerotinia sclerotiorum, but the cluster organization is not conserved between the two species. As for the botrydial biosynthesis genes, the expression of BcBOA genes is co-regulated by the Gα subunit BCG1 during both in vitro and in planta growth. The loss of botcinic acid production does not affect virulence on bean and tomato leaves. However, double mutants that do not produce botcinic acid or botrydial (bcpks6Δbcbot2Δ) exhibit markedly reduced virulence. Hence, a redundant role of botrydial and botcinic acid in the virulence of B. cinerea has been demonstrated.


Asunto(s)
Aldehídos/metabolismo , Botrytis/enzimología , Botrytis/patogenicidad , Compuestos Bicíclicos con Puentes/metabolismo , Micotoxinas/biosíntesis , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Aldehídos/química , Botrytis/genética , Compuestos Bicíclicos con Puentes/química , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Genes Fúngicos/genética , Solanum lycopersicum/microbiología , Familia de Multigenes/genética , Micotoxinas/química , Hojas de la Planta/microbiología , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Policétidos/química , Estructura Terciaria de Proteína , Regulación hacia Arriba/genética , Virulencia
11.
ACS Chem Biol ; 3(12): 791-801, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-19035644

RESUMEN

The fungus Botrytis cinerea is the causal agent of the economically important gray mold disease that affects more than 200 ornamental and agriculturally important plant species. B. cinerea is a necrotrophic plant pathogen that secretes nonspecific phytotoxins, including the sesquiterpene botrydial and the polyketide botcinic acid. The region surrounding the previously characterized BcBOT1 gene has now been identified as the botrydial biosynthetic gene cluster.Five genes including BcBOT1 and BcBOT2 were shown by quantitative reverse transcription-PCR to be co-regulated through the calcineurin signaling pathway. Inactivation of the BcBOT2 gene, encoding a putative sesquiterpene cyclase, abolished botrydial biosynthesis, which could be restored by in trans complementation.Inactivation of BcBOT2 also resulted in overproduction of botcinic acid that was observed to be strain-dependent. Recombinant BcBOT2 protein converted farnesyl diphosphate to the parent sesquiterpene of the botrydial biosynthetic pathway, the tricyclic alcohol presilphiperfolan-8beta-ol.


Asunto(s)
Botrytis/enzimología , Botrytis/genética , Familia de Multigenes/genética , Sesquiterpenos/metabolismo , Botrytis/patogenicidad
12.
PLoS One ; 2(5): e447, 2007 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-17505547

RESUMEN

BACKGROUND: A challenging goal in biology is to understand how the principal cellular functions are integrated so that cells achieve viability and optimal fitness in a wide range of nutritional conditions. METHODOLOGY/PRINCIPAL FINDINGS: We report here a tight link between glycolysis and DNA synthesis. The link, discovered during an analysis of suppressors of thermosensitive replication mutants in bacterium Bacillus subtilis, is very strong as some metabolic alterations fully restore viability to replication mutants in which a lethal arrest of DNA synthesis otherwise occurs at a high, restrictive, temperature. Full restoration of viability by such alterations was limited to cells with mutations in three elongation factors (the lagging strand DnaE polymerase, the primase and the helicase) out of a large set of thermosensitive mutants affected in most of the replication proteins. Restoration of viability resulted, at least in part, from maintenance of replication protein activity at high temperature. Physiological studies suggested that this restoration depended on the activity of the three-carbon part of the glycolysis/gluconeogenesis pathway and occurred in both glycolytic and gluconeogenic regimens. Restoration took place abruptly over a narrow range of expression of genes in the three-carbon part of glycolysis. However, the absolute value of this range varied greatly with the allele in question. Finally, restoration of cell viability did not appear to be the result of a decrease in growth rate or an induction of major stress responses. CONCLUSIONS/SIGNIFICANCE: Our findings provide the first evidence for a genetic system that connects DNA chain elongation to glycolysis. Its role may be to modulate some aspect of DNA synthesis in response to the energy provided by the environment and the underlying mechanism is discussed. It is proposed that related systems are ubiquitous.


Asunto(s)
Replicación del ADN/genética , Bacillus subtilis/genética , Genes Bacterianos , Glucólisis , Mutación
13.
Microbiology (Reading) ; 152(Pt 5): 1471-1478, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16622063

RESUMEN

Plasmids are the tools of choice for studying bacterial functions involved in DNA maintenance. Here a genetic study on the replication of a novel, low-copy-number, Bacillus subtilis plasmid, pBS72, is reported. The results show that two plasmid elements, the initiator protein RepA and an iteron-containing origin, and at least nine host-encoded replication proteins, the primosomal proteins DnaB, DnaC, DnaD, DnaG and DnaI, the DNA polymerases DnaE and PolC, and the polymerase cofactors DnaN and DnaX, are required for pBS72 replication. On the contrary, the cellular initiators DnaA and PriA, the helicase PcrA and DNA polymerase I are dispensable. From this, it is inferred that pBS72 replication is of the theta type and is initiated by an original mechanism. Indirect evidence suggests that during this process the DnaC helicase might be delivered to the plasmid origin by the weakly active DnaD pathway stimulated by a predicted interaction between DnaC and a domain of RepA homologous to the major DnaC-binding domain of the cellular initiator DnaA. The plasmid pBS72 replication fork appears to require the same functions as the bacterial chromosome and the unrelated plasmid pAMbeta1. Most importantly, this replication machinery contains the two type C polymerases, PolC and DnaE. As the mechanism of initiation of the three genomes is substantially different, this suggests that both type C polymerases might be required in any Cairns replication in B. subtilis and presumably in other bacteria encoding PolC and DnaE.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/fisiología , ADN Polimerasa III/fisiología , Replicación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Plásmidos/genética , Proteínas Bacterianas/genética , Secuencia de Bases , ADN Helicasas/genética , ADN Helicasas/fisiología , ADN Polimerasa III/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , ADN Polimerasa Dirigida por ADN/genética , Orden Génico , Genes Bacterianos , Datos de Secuencia Molecular , Origen de Réplica/genética , Origen de Réplica/fisiología , Transactivadores/genética , Transactivadores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA