Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 96(22): e0121722, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36326275

RESUMEN

Rabbit hemorrhagic disease virus (RHDV) typically causes a fatal disease in rabbits. In Australia, RHDV was imported to control the feral rabbit population, while it poses a severe threat to native rabbits in other countries. RHDV variants are genetically diverse and serological studies using antibodies isolated from infected rabbits or raised against RHDV virus-like particles (VLPs) have found RHDV variants antigenically distinct. In this study, we determined the X-ray crystal structure of an RHDV GI.2 (N11 strain) protruding (P) domain in complex with a diagnostic monoclonal antibody (2D9) Fab. We showed that 2D9 interacted with conserved and variable residues on top of the P domain with nanomolar affinity. To better illustrate 2D9 specificity, we determined the X-ray crystal structure of an RHDV GI.1b (Ast89 strain) that was a 2D9 non-binder. Structural analysis indicated that amino acid substitutions on the GI.1b P domain likely restricted 2D9 binding. Interestingly, a model of the GI.2 P domain-Fab complex superimposed onto a cryo-EM structure of an RHDV VLP revealed that 2D9 Fab molecules clashed with neighboring Fabs and indicated that there was a reduced antibody binding occupancy. Moreover, the RHDV GI.2 histo-blood group antigen (HBGA) co-factor binding site appeared obstructed when 2D9 was modeled on the VLP and suggested that 2D9 might also function by blocking HBGA attachment. Overall, this new data provides the first structural basis of RHDV antibody specificity and explains how amino acid variation at the binding site likely restricts 2D9 cross-reactivity. IMPORTANCE Isolated RHDV antibodies have been used for decades to distinguish between antigenic variants, monitor temporal capsid evolution, and examine neutralizing capacities. In this study, we provided the structural basis for an RHDV GI.2 specific diagnostic antibody (2D9) binding and reveal that a small number of amino acid substitutions at the binding site could differentiate between RHDV GI.2 and GI.1b. This novel structural information provides a framework for understanding how RHDV displays a specific antigenic epitope and engages an antibody at the atomic level. Importantly, part of the 2D9 binding region was earlier reported to contain a neutralizing epitope and our structural modeling as well as recent human norovirus antibody-mediated neutralization studies, suggest that the 2D9 antibody has the potential to block HBGA attachment. These new findings should aid in characterizing antigenic variants and advance the development of novel monoclonal antibodies for diagnostics and therapeutics.


Asunto(s)
Especificidad de Anticuerpos , Antígenos de Grupos Sanguíneos , Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Animales , Conejos , Antígenos de Grupos Sanguíneos/metabolismo , Infecciones por Caliciviridae/veterinaria , Epítopos/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34769480

RESUMEN

A natural recombinant myxoma virus (referred to as ha-MYXV or MYXV-Tol08/18) emerged in the Iberian hare (Lepus granatensis) and the European rabbit (Oryctolagus cuniculus) in late 2018 and mid-2020, respectively. This new virus is genetically distinct from classic myxoma virus (MYXV) strains that caused myxomatosis in rabbits until then, by acquiring an additional 2.8 Kbp insert within the m009L gene that disrupted it into ORFs m009L-a and m009L-b. To distinguish ha-MYXV from classic MYXV strains, we developed a robust qPCR multiplex technique that combines the amplification of the m000.5L/R duplicated gene, conserved in all myxoma virus strains including ha-MYXV, with the amplification of two other genes targeted by the real-time PCR systems designed during this study, specific either for classic MYXV or ha-MYXV strains. The first system targets the boundaries between ORFs m009L-a and m009L-b, only contiguous in classic strains, while the second amplifies a fragment within gene m060L, only present in recombinant MYXV strains. All amplification reactions were validated and normalized by a fourth PCR system directed to a housekeeping gene (18S rRNA) conserved in eukaryotic organisms, including hares and rabbits. The multiplex PCR (mPCR) technique described here was optimized for Taqman® and Evagreen® systems allowing the detection of as few as nine copies of viral DNA in the sample with an efficiency > 93%. This real-time multiplex is the first fast method available for the differential diagnosis between classic and recombinant MYXV strains, also allowing the detection of co-infections. The system proves to be an essential and effective tool for monitoring the geographical spread of ha-MYXV in the hare and wild rabbit populations, supporting the management of both species in the field.


Asunto(s)
Lagomorpha/virología , Myxoma virus , Mixomatosis Infecciosa/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Animales Salvajes , Diagnóstico Diferencial , Transferencia de Gen Horizontal/genética , Tipificación Molecular/métodos , Tipificación Molecular/veterinaria , Myxoma virus/clasificación , Myxoma virus/genética , Mixomatosis Infecciosa/virología , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , España
3.
Glycoconj J ; 34(5): 679-689, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28823097

RESUMEN

Attachment of human noroviruses to histo blood group antigens (HBGAs) is thought to be critical for the infection process. Therefore, we have determined binding epitopes of synthetic type 1 to 6 blood group A- and B-tetrasaccharides binding to GII.4 human Norovirus virus like particles (VLPs) using STD NMR experiments. So far, little information is available from crystal structure analysis studies on the interactions of the reducing-end sugars with the protruding domain (P-domain) of the viral coat protein VP1. Here, we show that the reducing-end sugars make notable contacts with the protein surface. The type of glycosidic linkage, and the identity of the sugar at the reducing end modulate HBGA recognition. Most strikingly, type 2 structures yield only very poor saturation transfer indicating impeded binding. This observation is in accordance with previous mass spectrometry based affinity measurements, and can be understood based on recent crystal structure data of a complex of highly homologous GII.4 P-dimers with H-type 2 trisaccharide where the N-acetyl group of the reducing N-acetyl glucosamine residue points towards a loop comprising amino acids Q390 to H395. We suggest that in our case, binding of type 2 A- and B-tetrasaccharides leads to steric conflicts with this loop. In order to identify factors determining L-Fuc recognition, we also synthesized GII.4 VLPs with point mutations D391A and H395A. Prior studies had suggested that these residues, located in a second shell around the L-Fuc binding site, assist L-Fuc binding. STD NMR experiments with L-Fuc and B-trisaccharide in the presence of wild type and mutant VLPs yield virtually identical binding epitopes suggesting that these two mutations do not significantly alter HBGA recognition. Our study emphasizes that recognition of α-(1→2)-linked L-Fuc residues is a conserved feature of GII.4 noroviruses. However, structural variation of the HBGA core structures clearly modulates molecular recognition depending on the genotype.


Asunto(s)
Antígenos de Grupos Sanguíneos/química , Proteínas de la Cápside/química , Epítopos/química , Norovirus/química , Oligosacáridos/química , Virión/química , Sitios de Unión , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Conformación de Carbohidratos , Clonación Molecular , Cristalografía por Rayos X , Mapeo Epitopo , Epítopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fucosa/química , Fucosa/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Genotipo , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Norovirus/ultraestructura , Oligosacáridos/metabolismo , Mutación Puntual , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virión/ultraestructura
4.
J Virol ; 89(4): 2378-87, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25505081

RESUMEN

UNLABELLED: Rabbit hemorrhagic disease virus (RHDV) is a member of the Caliciviridae family (Lagovirus genus). RHDV is highly contagious and attaches to epithelial cells in the digestive or respiratory tract, leading to massive lesions with high mortality rates. A new variant of RHDV (termed RHDVb) recently has emerged, and previously vaccinated rabbits appear to have little protection against this new strain. Similar to human norovirus (Caliciviridae, Norovirus genus), RHDV binds histo-blood group antigens (HBGAs), and this is thought to be important for infection. Here, we report the HBGA binding site on the RHDVb capsid-protruding domain (P domain) using X-ray crystallography. The HBGA binding pocket was located in a negatively charged patch on the side of the P domain and at a dimeric interface. Residues from both monomers contributed to the HBGA binding and involved a network of direct hydrogen bonds and water-mediated interactions. An amino acid sequence alignment of different RHDV strains indicated that the residues directly interacting with the ABH-fucose of the HBGAs (Asp472, Asn474, and Ser479) were highly conserved. This result suggested that different RHDV strains also could bind HBGAs at the equivalent pocket. Moreover, several HBGA binding characteristics between RHDVb and human genogroup II norovirus were similar, which indicated a possible convergent evolution of HBGA binding interactions. Further structural studies with other RHDV strains are needed in order to better understand the HBGA binding mechanisms among the diverse RHDV strains. IMPORTANCE: We identified, for the first time, the HBGA binding site on an RHDVb P domain using X-ray crystallography. Our results showed that RHDVb and human genogroup II noroviruses had similar HBGA binding interactions. Recently, it was discovered that synthetic HBGAs or HBGA-expressing enteric bacteria could enhance human genogroup II norovirus infection in B cells. Considering that RHDVb and genogroup II norovirus similarly interacted with HBGAs, it may be possible that a comparable cell culture system also could work with RHDVb. Taken together, these new findings will extend our understanding of calicivirus HBGA interactions and may help to elucidate the specific roles of HBGAs in calicivirus infections.


Asunto(s)
Antígenos de Grupos Sanguíneos/química , Proteínas de la Cápside/química , Virus de la Enfermedad Hemorrágica del Conejo/química , Animales , Sitios de Unión , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas de la Cápside/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , Virus de la Enfermedad Hemorrágica del Conejo/fisiología , Modelos Moleculares , Unión Proteica , Conformación Proteica , Conejos , Acoplamiento Viral
5.
J Gen Virol ; 96(Pt 6): 1309-1319, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25626685

RESUMEN

Rabbit hemorrhagic disease virus (RHDV), a Lagovirus of the family Caliciviridae, causes rabbit hemorrhagic disease (RHD) in the European rabbit (Oryctolagus cuniculus). The disease was first documented in 1984 in China and rapidly spread worldwide. In 2010, a new RHDV variant emerged, tentatively classified as 'RHDVb'. RHDVb is characterized by affecting vaccinated rabbits and those <2 months old, and is genetically distinct (~20 %) from older strains. To determine the evolution of RHDV, including the new variant, we generated 28 full-genome sequences from samples collected between 1994 and 2014. Phylogenetic analysis of the gene encoding the major capsid protein, VP60, indicated that all viruses sampled from 2012 to 2014 were RHDVb. Multiple recombination events were detected in the more recent RHDVb genomes, with a single major breakpoint located in the 5' region of VP60. This breakpoint divides the genome into two regions: one that encodes the non-structural proteins and another that encodes the major and minor structural proteins, VP60 and VP10, respectively. Additional phylogenetic analysis of each region revealed two types of recombinants with distinct genomic backgrounds. Recombinants always include the structural proteins of RHDVb, with non-structural proteins from non-pathogenic lagoviruses or from pathogenic genogroup 1 strains. Our results show that in contrast to the evolutionary history of older RHDV strains, recombination plays an important role in generating diversity in the newly emerged RHDVb.


Asunto(s)
Evolución Molecular , Genoma Viral , Virus de la Enfermedad Hemorrágica del Conejo/genética , Recombinación Genética , Animales , China , Análisis por Conglomerados , Virus de la Enfermedad Hemorrágica del Conejo/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Conejos , Análisis de Secuencia de ADN , Homología de Secuencia
6.
Arch Virol ; 159(2): 321-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23942953

RESUMEN

Rabbit haemorrhagic disease virus (RHDV), genus Lagovirus, family Caliciviridae, causes a large number of deaths in wild and domestic adult European rabbits (Oryctolagus cuniculus). The first documented outbreak dates from 1984 in China, but the virus rapidly dispersed worldwide. In 1997, an antigenic variant was detected in Italy and designated RHDVa. Despite causing symptoms similar to those caused by classic RHDV strains, marked antigenic and genetic differences exist. In some parts of Europe, RHDVa is replacing classic strains. Here, we report the presence of RHDVa on the Iberian Peninsula, where this variant was thought not to contribute to viral diversity.


Asunto(s)
Infecciones por Caliciviridae/veterinaria , Virus de la Enfermedad Hemorrágica del Conejo/aislamiento & purificación , Enfermedades de los Roedores/virología , Animales , Infecciones por Caliciviridae/virología , Análisis por Conglomerados , Genotipo , Virus de la Enfermedad Hemorrágica del Conejo/clasificación , Virus de la Enfermedad Hemorrágica del Conejo/genética , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Conejos , Análisis de Secuencia de ADN , España
7.
Viruses ; 16(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38932159

RESUMEN

In virology, the term reverse genetics refers to a set of methodologies in which changes are introduced into the viral genome and their effects on the generation of infectious viral progeny and their phenotypic features are assessed. Reverse genetics emerged thanks to advances in recombinant DNA technology, which made the isolation, cloning, and modification of genes through mutagenesis possible. Most virus reverse genetics studies depend on our capacity to rescue an infectious wild-type virus progeny from cell cultures transfected with an "infectious clone". This infectious clone generally consists of a circular DNA plasmid containing a functional copy of the full-length viral genome, under the control of an appropriate polymerase promoter. For most DNA viruses, reverse genetics systems are very straightforward since DNA virus genomes are relatively easy to handle and modify and are also (with few notable exceptions) infectious per se. This is not true for RNA viruses, whose genomes need to be reverse-transcribed into cDNA before any modification can be performed. Establishing reverse genetics systems for members of the Caliciviridae has proven exceptionally challenging due to the low number of members of this family that propagate in cell culture. Despite the early successful rescue of calicivirus from a genome-length cDNA more than two decades ago, reverse genetics methods are not routine procedures that can be easily extrapolated to other members of the family. Reports of calicivirus reverse genetics systems have been few and far between. In this review, we discuss the main pitfalls, failures, and delays behind the generation of several successful calicivirus infectious clones.


Asunto(s)
Caliciviridae , Genética Inversa , Genética Inversa/métodos , Caliciviridae/genética , Genoma Viral , Animales , Humanos , Replicación Viral
8.
Emerg Infect Dis ; 18(12): 2009-12, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23171812

RESUMEN

Outbreaks of rabbit hemorrhagic disease have occurred recently in young rabbits on farms on the Iberian Peninsula where rabbits were previously vaccinated. Investigation identified a rabbit hemorrhagic disease virus variant genetically related to apathogenic rabbit caliciviruses. Improved antivirus strategies are needed to slow the spread of this pathogen.


Asunto(s)
Infecciones por Caliciviridae/veterinaria , Brotes de Enfermedades/veterinaria , Virus de la Enfermedad Hemorrágica del Conejo/aislamiento & purificación , Animales , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/genética , Virus de la Enfermedad Hemorrágica del Conejo/clasificación , Virus de la Enfermedad Hemorrágica del Conejo/genética , Datos de Secuencia Molecular , Filogenia , Conejos , España/epidemiología
9.
Phytother Res ; 26(10): 1513-20, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22318977

RESUMEN

The antiherpes virus properties of Phyllanthus orbicularis Kunth, a Cuban-endemic medicinal plant, have been reported previously but data on its phytochemical profile and identification of antiviral metabolites as well as their mechanisms of action are still lacking. In this work, a bioactivity-guided phytochemical analysis was performed in order to isolate anti HSV-2 compounds. P. orbicularis contained mainly phenolic acids derivatives and flavonoids. The antiviral effects were attributed to (-)-epicatechin-3-O-gallate (EC(50) = 11.7 µg/mL), procyanidins B1 and B2 (EC(50) = 32.8 µg/mL and 24.2 µg/mL, respectively) as well as oligomeric and polymeric procyanidins and their gallate derivatives. The antiviral mechanisms of the active P. orbicularis extracts and fractions were also investigated and the inhibition of several HSV-2 early replication events and DNA synthesis were observed. This is the first study of extensive fractionation and phytochemical characterization of phenolic compounds from this species.


Asunto(s)
Antivirales/farmacología , Herpesvirus Humano 2/efectos de los fármacos , Phyllanthus/química , Extractos Vegetales/farmacología , Animales , Catequina/análogos & derivados , Catequina/aislamiento & purificación , Catequina/farmacología , Fraccionamiento Químico , Chlorocebus aethiops , Extractos Vegetales/química , Plantas Medicinales/química , Proantocianidinas/aislamiento & purificación , Proantocianidinas/farmacología , Células Vero
10.
Transbound Emerg Dis ; 69(4): 1684-1690, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35366052

RESUMEN

Myxomatosis is an emergent disease in the Iberian hare (Lepus granatensis). In this species, the disease is caused by a natural recombinant virus (ha-myxoma virus [MYXV]) identified for the first time in 2018 and has since been responsible for a large number of outbreaks in Spain and Portugal. The ha-MYXV, which harbours a 2.8 Kb insert-disrupting gene M009L, can also infect and cause disease in wild and domestic rabbits, despite being less frequently identified in rabbits. During the laboratory investigations of wild leporids found dead in Portugal carried out within the scope of a Nacional Surveillance Plan (Dispatch 4757/17, MAFDR), co-infection events by classic (MYXV) and naturally recombinant (ha-MYXV) strains were detected in both one Iberian hare and one European wild rabbit (Oryctolagus cuniculus algirus). These two cases were initially detected by a multiplex qPCR detection of MYXV and ha-MYXV and subsequently confirmed by conventional PCR and sequencing of the M009L gene, which contains an ha-MYXV-specific insertion. To our knowledge, this is the first documented report of co-infection by classic MYXV and ha-MYXV strains either in Iberian hare or in European wild rabbit. It is also the first report of infection of an Iberian hare by a classic MYXV strain. These findings highlight the continuous evolution of the MYXV and the frequent host range changes that justify the nonstop monitoring of the sanitary condition of wild Leporidae populations in the Iberian Peninsula.


Asunto(s)
Coinfección , Liebres , Myxoma virus , Animales , Coinfección/epidemiología , Coinfección/veterinaria , Especificidad del Huésped , Myxoma virus/genética , Filogenia , Conejos
11.
Vaccines (Basel) ; 10(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35334987

RESUMEN

The recent emergence of a new myxoma virus capable of causing disease in the Iberian hare (Lepus granatensis) has resulted in numerous outbreaks with high mortality leading to the reduction, or even the disappearance, of many local populations of this wild species in the Iberian Peninsula. Currently, the available vaccines that prevent myxomatosis in domestic rabbits caused by classic strains of myxoma virus have not been assessed for use in Iberian hares. The main objective of this study was to evaluate the efficacy of commercial rabbit vaccines in Iberian hares and wild rabbits against the natural recombinant myxoma virus (ha-MYXV), bearing in mind its application in specific scenarios where capture is possible, such as genetic reserves. The study used a limited number of animals (pilot study), 15 Iberian hares and 10 wild rabbits. Hares were vaccinated with Mixohipra-FSA vaccine (Hipra) and Mixohipra-H vaccine (Hipra) using two different doses, and rabbits were vaccinated with the Mixohipra-H vaccine or the Nobivac Myxo-RHD PLUS (MSD Animal Health) using the recommended doses for domestic rabbits. After the vaccination trials, the animals were challenged with a wild type strain of ha-MYXV. The results showed that no protection to ha-MYXV challenge was afforded when a commercial dose of Mixohipra-FSA or Mixohipra-H vaccine was used in hares. However, the application of a higher dose of Mixohipra-FSA vaccine may induce protection and could possibly be used to counteract the accelerated decrease of wild hare populations due to ha-MYXV emergence. The two commercial vaccines (Mixohipra-H and Nobivac Myxo-RHD PLUS) tested in wild rabbits were fully protective against ha-MYXV infection. This knowledge gives more insights into ha-MYXV management in hares and rabbits and emphasises the importance of developing a vaccine capable of protecting wild populations of Iberian hare and wild rabbit towards MYXV and ha-MYXV strains.

12.
mBio ; 13(2): e0346121, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35352978

RESUMEN

Myxoma virus (MYXV) is naturally found in rabbit Sylvilagus species and is known to cause lethal myxomatosis in European rabbits (Oryctolagus cuniculus). In 2019, an MYXV strain (MYXV strain Toledo [MYXV-Tol]) causing myxomatosis-like disease in Iberian hares (Lepus granatensis) was identified. MYXV-Tol acquired a recombinant region of ∼2.8 kb harboring several new genes, including a novel host range gene (M159) that we show to be an orthologous member of the vaccinia virus C7 host range family. Here, to test whether M159 alone has enabled MYXV to alter its host range to Iberian hares, several recombinant viruses were generated, including an MYXV-Tol ΔM159 (knockout) strain. While MYXV-Tol underwent fully productive infection in hare HN-R cells, neither the wild-type MYXV-Lau strain (lacking M159) nor vMyxTol-ΔM159 (deleted for M159) was able to infect and replicate, showing that the ability of MYXV-Tol to infect these cells and replicate depends on the presence of M159. Similar to other C7L family members, M159 was shown to be expressed as an early/late gene but was translocated into the nucleus at later time points, indicating that further studies are needed to elucidate its role in the nucleus. Finally, in rabbit cells, the M159 protein did not contribute to increased replication but was able to upregulate the replication levels of MYXV in nonpermissive and semipermissive human cancer cells, suggesting that the M159-targeted pathway is conserved across mammalian species. Altogether, these observations demonstrate that the M159 protein plays a critical role in determining the host specificity of MYXV-Tol in hare and human cells by imparting new host range functions. IMPORTANCE The coevolution of European rabbit populations and MYXV is a textbook example of an arms race between a pathogen and a host. Recently, a recombinant MYXV (MYXV-Tol) crossed the species barrier by jumping from leporid species to another species, causing lethal myxomatosis-like disease. Given the highly pathogenic nature of this new virus in hares and the incidences of other poxvirus cross-species spillovers into other animals, including humans, it is important to understand how and why MYXV-Tol was able to become virulent in a new host species. The results presented clearly demonstrate that M159 is the key factor allowing MYXV-Tol replication in hare cells by imparting new host range functions. These results have the potential to improve current knowledge about the virulence of poxviruses and provide a platform to better understand the new MYXV-Tol, rendering the virus capable of leaping into a new host species.


Asunto(s)
Liebres , Myxoma virus , Virus , Animales , Especificidad del Huésped , Myxoma virus/genética , Proteínas , Conejos , Virulencia/genética , Replicación Viral
13.
Microbiol Spectr ; 10(3): e0026922, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35506680

RESUMEN

The antimicrobial properties of photocatalysts have long been studied. However, most of the available literature describes their antibacterial properties, while knowledge of their antiviral activity is rather scarce. Since the outset of the coronavirus disease 2019 (COVID-19) pandemic, an increasing body of research has suggested their antiviral potential and highlighted the need for further research in this area. In this study, we investigated the virucidal properties of a commercial TiO2-coated photocatalytic glass against a model human coronavirus. Our findings demonstrate that the TiO2-coated glass consistently inactivates coronaviruses upon contact under daylight illumination, in a time-dependent manner. A 99% drop in virus titer was achieved after 3.9 h. The electron micrographs of virus-covered TiO2-glass showed a reduced number of virions compared to control glass. Morphological alterations of TiO2-exposed viruses included deformation, disruption of the viral envelope, and virion ghosts, endorsing the application of this material in the construction of protective elements to mitigate the transmission of viruses. To the best of our knowledge, this is the first report showing direct visual evidence of human coronaviruses being damaged and morphologically altered following exposure to this photocatalyst. IMPORTANCE Surface contamination is an important contributor to SARS-CoV-2 spread. The use of personal protective elements and physical barriers (i.e., masks, gloves, and indoor glass separators) increases safety and has proven invaluable in preventing contagion. Redesigning these barriers so that the virus cannot remain infectious on them could make a difference in COVID-19 epidemiology. The introduction of additives with virucidal activity could potentiate the protective effects of these barriers to serve not only as physical containment but also as virus killers, reducing surface contamination after hand touch or aerosol deposition. We performed in-depth analysis of the kinetics of photocatalysis-triggered coronavirus inactivation on building glass coated with TiO2. This is the first report showing direct visual evidence (electron microscopy) of coronaviruses being morphologically damaged following exposure to this photocatalyst, demonstrating the high potential of this material to be incorporated into daily-life high-touch surfaces, giving them an added value in decelerating the virus spread.


Asunto(s)
COVID-19 , Virus , Antivirales/farmacología , COVID-19/prevención & control , Humanos , Pandemias , SARS-CoV-2
14.
Transbound Emerg Dis ; 69(3): 1030-1045, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33683820

RESUMEN

Rabbit haemorrhagic disease (RHD) is a major threat to domestic and wild European rabbits. Presently, in Europe, the disease is caused mainly by Rabbit haemorrhagic disease virus 2 (RHDV2/b or Lagovirus europaeus GI.2), the origin of which is still unclear, as no RHDV2 reservoir hosts were identified. After the RHDV2 emergence in 2010, viral RNA was detected in a few rodent species. Furthermore, RHDV2 was found to cause disease in some hare species resembling the disease in rabbits, evidencing the ability of the virus to cross the species barrier. In this study, through molecular, histopathologic, antigenic and morphological evidences, we demonstrate the presence and replication of RHDV2 in Eurasian badgers (Meles meles) found dead in the district of Santarém, Portugal, between March 2017 and January 2020. In these animals, we further classify the RHDV2 as a Lagovirus europaeus recombinant GI.4P-GI.2. Our results indicate that Meles meles is susceptible to RHDV2, developing systemic infection, and excreting the virus in the faeces. Given the high viral loads seen in several organs and matrices, we believe that transmission to the wild rabbit is likely. Furthermore, transmission electron microscopy data show the presence of calicivirus compatible virions in the nucleus of hepatocytes, which constitutes a paradigm shift for caliciviruses' replication cycle.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Lagomorpha , Lagovirus , Mustelidae , Animales , Infecciones por Caliciviridae/veterinaria , Virus de la Enfermedad Hemorrágica del Conejo/genética , Filogenia , Conejos
15.
Chemistry ; 17(27): 7442-53, 2011 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-21567493

RESUMEN

Noroviruses attach to their host cells through histo blood group antigens (HBGAs), and compounds that interfere with this interaction are likely to be of therapeutic or diagnostic interest. It is shown that NMR binding studies can simultaneously identify and differentiate the site for binding HBGA ligands and complementary ligands from a large compound library, thereby facilitating the design of potent heterobifunctional ligands. Saturation transfer difference (STD) NMR experiments, spin-lock filtered NMR experiments, and interligand NOE (ILOE) experiments in the presence of virus-like particles (VLPs), identified compounds that bind to the HBGA binding site of human norovirus. Based on these data two multivalent prototype entry-inhibitors against norovirus infection were synthesized. A surface plasmon resonance based inhibition assay showed avidity gains of 1000 and one million fold over a millimolar univalent ligand. This suggests that further rational design of multivalent inhibitors based on our strategy will identify potent entry-inhibitors against norovirus infections.


Asunto(s)
Antivirales/síntesis química , Diseño de Fármacos , Antivirales/química , Antivirales/farmacología , Ligandos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Norovirus/efectos de los fármacos , Norovirus/genética , Bibliotecas de Moléculas Pequeñas , Estereoisomerismo , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
16.
Vaccines (Basel) ; 9(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34579243

RESUMEN

The VP60 capsid protein from rabbit haemorrhagic disease virus (RHDV), the causative agent of one of the most economically important disease in rabbits worldwide, forms virus-like particles (VLPs) when expressed using heterologous protein expression systems such as recombinant baculovirus, yeasts, plants or mammalian cell cultures. To prevent RHDV dissemination, it would be beneficial to develop a bivalent vaccine including both RHDV GI.1- and RHDV GI.2-derived VLPs to achieve robust immunisation against both serotypes. In the present work, we developed a strategy of production of a dual-serving RHDV vaccine co-expressing the VP60 proteins from the two RHDV predominant serotypes using CrisBio technology, which uses Tricholusia ni insect pupae as natural bioreactors, which are programmed by recombinant baculovirus vectors. Co-infecting the insect pupae with two baculovirus vectors expressing the RHDV GI.1- and RHDV GI.2-derived VP60 proteins, we obtained chimeric VLPs incorporating both proteins as determined by using serotype-specific monoclonal antibodies. The resulting VLPs showed the typical size and shape of this calicivirus as determined by electron microscopy. Rabbits immunised with the chimeric VLPs were fully protected against a lethal challenge infection with the two RHDV serotypes. This study demonstrates that it is possible to generate a dual cost-effective vaccine against this virus using a single production and purification process, greatly simplifying vaccine manufacturing.

17.
Transbound Emerg Dis ; 68(3): 1424-1431, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32813890

RESUMEN

Myxoma virus (MYXV) is the aetiological agent of myxomatosis, a systemic, mostly lethal disease that affects European rabbits. Vaccination against it, although widespread, has not been completely effective and disease outbreaks still take place on farms which carry out vaccination programmes. Since some of these cases have been attributed to airborne transmission or the spread of the virus via inanimate vectors, the aims of this study were to determine MYXV contamination levels and distribution in the environment of vaccinated farms and to ascertain whether the detected virus corresponded to field strains. For that, environmental samples from several areas, tools and employees from four (three infected and one uninfected) rabbitries were taken and analysed by qPCR. MYXV was detected in the environment of all the infected farms, whereas all the samples from the non-infected farm were negative. Furthermore, all the positive samples contained viral DNA compatible with field strains of the virus. These results lead us to believe that the administration of currently available commercial vaccines does not prevent infected animals from shedding the field virus. Moreover, viral DNA was also found in items that are not in direct contact with the animals, which could play a role in the transmission of the infection throughout the farm and to other farms. Therefore, this study proves that current vaccination schemes on their own are not sufficient to prevent this disease and should be accompanied by adequate biosecurity measures.


Asunto(s)
Vivienda para Animales , Myxoma virus/aislamiento & purificación , Infecciones por Poxviridae/veterinaria , Infecciones Tumorales por Virus/veterinaria , Animales , ADN Viral/análisis , Microbiología Ambiental , Infecciones por Poxviridae/diagnóstico , Infecciones por Poxviridae/virología , Conejos , España , Infecciones Tumorales por Virus/diagnóstico , Infecciones Tumorales por Virus/virología
18.
Virol J ; 7: 49, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20187925

RESUMEN

BACKGROUND: Myxoma virus (MV) has been endemic in Europe since shortly after its deliberate release in France in 1952. While the emergence of more resistant hosts and more transmissible and attenuated virus is well documented, there have been relatively few studies focused on the sequence changes incurred by the virus as it has adapted to its new host. In order to identify regions of variability within the MV genome to be used for phylogenetic studies and to try to investigate causes of MV strain attenuation we have molecularly characterised nine strains of MV isolated in Spain between the years 1992 and 1995 from wide ranging geographic locations and which had been previously graded for virulence by experimental infection of rabbits. RESULTS: The findings reported here show the analysis of 16 genomic regions accounting for approximately 10% of the viral genomes. Of the 20 genes analysed 5 (M034L, M069L, M071L, M130R and M135R) were identical in all strains and 1 (M122R) contained only a single point mutation in an individual strain. Four genes (M002L/R, M009L, M036L and M017L) showed insertions or deletions that led to disruption of the ORFs. CONCLUSIONS: The findings presented here provide valuable tools for strain differentiation and phylogenetic studies of MV isolates and some clues as to the reasons for virus attenuation in the field.


Asunto(s)
Myxoma virus/química , Myxoma virus/patogenicidad , Polimorfismo Genético , Infecciones por Poxviridae/veterinaria , Infecciones Tumorales por Virus/veterinaria , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Genes Virales , Mutación INDEL , Datos de Secuencia Molecular , Myxoma virus/aislamiento & purificación , Mutación Puntual , Infecciones por Poxviridae/virología , Conejos , Alineación de Secuencia , Análisis de Secuencia de ADN , España , Infecciones Tumorales por Virus/virología , Virulencia
19.
Front Microbiol ; 11: 596245, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304341

RESUMEN

Most caliciviruses are refractory to replication in cell culture and only a few members of the family propagate in vitro. Rabbit vesivirus (RaV) is unique due to its ability to grow to high titers in several animal and human cell lines. This outstanding feature makes RaV an ideal candidate for reverse genetics studies, an invaluable tool to understand the molecular basis of virus replication, the biological functions of viral genes and their roles in pathogenesis. The recovery of viruses from a cDNA clone is a prerequisite for reverse genetics studies. In this work, we constructed a RaV infectious cDNA clone using a plasmid expression vector, under the control of bacteriophage T7 RNA-polymerase promoter. The transfection of permissive cells with this plasmid DNA in the presence of T7 RNA-polymerase, provided in trans by a helper recombinant poxvirus, led to de novo synthesis of RNA transcripts that emulated the viral genome. The RaV progeny virus produced the typical virus-induced cytopathic effect after several passages of cell culture supernatants. Similarly, infectious RaV was recovered when the transcription step was performed in vitro, prior to transfection, provided that a 5'-cap structure was added to the 5' end of synthetic genome-length RNAs. In this work, we report an efficient and consistent RaV rescue system based on a cDNA transcription vector, as a tool to investigate calicivirus biology through reverse genetics.

20.
Sci Rep ; 10(1): 3551, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32080329

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA