Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Neurol Neurosurg ; 228: 107714, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054476

RESUMEN

OBJECTIVE: Attention Deficit/Hyperactivity Disorder (ADHD) is a common behavioral syndrome that begins in childhood and affects 3.4% of children worldwide. Due to its etiological complexity, there are no consistent biomarkers for ADHD, however the high heritability presented by the disorder indicates a genetic/epigenetic influence. The main epigenetic mechanism is DNA methylation, a process with an important role in gene expression and in many psychiatric disorders. Thus, our study sought to identify epi-signatures biomarkers in 29 children clinically diagnosed with ADHD. METHODS: After DNA extraction and bisulfite conversion, we performed methylation array experiment for differential methylation, ontological and biological age analysis. RESULTS: The biological response in ADHD patients was not sufficient to determine a conclusive epi-signature in our study. However, our results highlighted the interaction of energy metabolism and oxidative stress pathways in ADHD patients detected by differential methylation patterns. Furthermore, we were able to identify a marginal association between the DNAmAge and ADHD. CONCLUSION: Our study present new methylation biomarkers findings associated with energy metabolism and oxidative stress pathways, in addition to DNAmAge in ADHD patients. However, we propose that further multiethnic studies, with larger cohorts and including maternal conditions, are necessary to demonstrate a definitive association between ADHD and these methylation biomarkers.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Metilación de ADN , Niño , Humanos , Metilación de ADN/genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Epigénesis Genética , Biomarcadores/metabolismo , Envejecimiento
2.
Mol Genet Genomic Med ; 8(4): e1133, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32073752

RESUMEN

BACKGROUND: Bloom syndrome (BS) is a rare autosomal recessive chromosome instability disorder. The main clinical manifestations are growth deficiency, telangiectasic facial erythema, immunodeficiency, and increased risk to develop neoplasias at early age. Cytogenetic test for sister chromatid exchanges (SCEs) is used as a diagnostic marker for BS. In addition, most patients also present mutations in the BLM gene, related to defects in the DNA repair mechanism. However, the molecular mechanism behind the pathogenicity of BS is still not completely understood. METHODS: We describe two patients confirmed with BS by SCE and molecular analysis. Also, we performed the gene expression profile by the RNA-seq methodology in mRNA transcripts for differential gene expression analysis using as a biological condition for comparison BS versus health controls. RESULTS: We detected 216 differentially expressed genes related to immunological pathways such as positive regulation and activation of B cells, immune effector process and absence of difference of DNA repair genes expression. In addition; we also observed differentially expressed genes associated with apoptosis control, such as BCL2L1, CASP7, CDKN1A, E2F2, ITPR, CD274, TNFAIP6, TNFRSF25, TNFRSF13C, and TNFRSF17. CONCLUSION: Our results suggest that the combination of altered expression of genes involved in signaling pathways of immune response and apoptosis control may contribute directly to the main characteristics observed in BS, such as recurrent infections, growth failure, and high risk of cancer. Transcriptome studies of other instability syndromes could allow a more accurate analysis of the relevant gene interactions associated with the destabilization of the genome. This is a first description of the profile of differential gene expression related to immunological aspects detected in patients with BS by RNA-seq.


Asunto(s)
Síndrome de Bloom/genética , Transcriptoma , Adolescente , Adulto , Apoptosis , Linfocitos B/inmunología , Síndrome de Bloom/inmunología , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA