Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
FASEB J ; 37(6): e22923, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37104087

RESUMEN

Ghrelin represents a key hormone regulating energy balance. Upon activation of the growth hormone secretagogue receptor (GHSR), ghrelin increases blood glucose levels, food intake, and promotes weight gain. The liver-expressed antimicrobial peptide 2 (LEAP2) acts as an endogenous antagonist of the GHSR. While the regulation of LEAP2 and its effect on the GHSR likely occur in an opposite pattern to that of ghrelin, the dietary regulation of LEAP2 remains to be described. We, therefore, examined the regulation of LEAP2 by different acute meal challenges (glucose, mixed meal, olive, lard, and fish oil) and diets (chow vs. high-fat) in C57BL/6 male mice. In addition, the effect of specific fatty acids (oleic, docosahexaenoic, and linoleic acid) on LEAP2 was assessed in murine intestinal organoids. While only mixed meal increased liver Leap2 expression, all meal challenges except fish oil increased jejunal Leap2 expression compared to water. Leap2 expression correlated with levels of hepatic glycogen and jejunal lipids. Lipid versus water dosing increased LEAP2 levels in the systemic circulation and portal vein where fish oil was associated with the smallest increase. In line with this, oleic acid, but not docosahexaenoic acid increased Leap2 expression in intestinal organoids. Feeding mice with high-fat versus chow diet not only increased plasma LEAP2 levels, but also the increment in plasma LEAP2 upon dosing with olive oil versus water. Taken together, these results show that LEAP2 is regulated by meal ingestion in both the small intestine and the liver according to the meal/diet of interest and local energy stores.


Asunto(s)
Dieta , Ghrelina , Animales , Masculino , Ratones , Ácidos Grasos , Ghrelina/metabolismo , Ratones Endogámicos C57BL , Aumento de Peso
2.
J Transl Med ; 19(1): 80, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596938

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are highly prevalent comorbidities in patients with Type 2 diabetes. While many of these patients eventually will need treatment with insulin, little is known about the effects of insulin treatment on histopathological parameters and hepatic gene expression in diabetic patients with co-existing NAFLD and NASH. To investigate this further, we evaluated the effects of insulin treatment in NASH diet-fed hamsters with streptozotocin (STZ) -induced hyperglycemia. METHODS: Forty male Syrian hamsters were randomized into four groups (n = 10/group) receiving either a NASH-inducing (high fat, fructose and cholesterol) or control diet (CTRL) for four weeks, after which they were treated with STZ or sham-injected and from week five treated with either vehicle (CTRL, NASH, NASH-STZ) or human insulin (NASH-STZ-HI) for four weeks by continuous s.c. infusion via osmotic minipumps. RESULTS: NASH-STZ hamsters displayed pronounced hyperglycemia, dyslipidemia and more severe liver pathology compared to both CTRL and NASH groups. Insulin treatment attenuated dyslipidemia in NASH-STZ-HI hamsters and liver pathology was considerably improved compared to the NASH-STZ group, with prevention/reversal of hepatic steatosis, hepatic inflammation and stellate cell activation. In addition, expression of inflammatory and fibrotic genes was decreased compared to the NASH-STZ group. CONCLUSIONS: These results suggest that hyperglycemia is important for development of inflammation and profibrotic processes in the liver, and that insulin administration has beneficial effects on liver pathology and expression of genes related to inflammation and fibrosis in a hyperglycemic, dyslipidemic hamster model of NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dislipidemias , Enfermedad del Hígado Graso no Alcohólico , Animales , Cricetinae , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Humanos , Hígado , Masculino , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
3.
Digestion ; 94(4): 199-214, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27931035

RESUMEN

BACKGROUND/AIMS: In contrast to streptozotocin (STZ)-induced rodent models of diabetes, there are no thorough characterizations of the intestinal phenotype and the underlying changes in the global gene-expression of genetic models of diabetes, such as the Zucker diabetic fatty (ZDF) rat. The aim of the present study was to characterize the intestine in the ZDF rat. METHODS: The intestine of ZDF rats and lean controls was examined macroscopically and histologically, and ribonucleic acid sequencing (RNAseq) was performed in samples of jejunal mucosa. RESULTS: We observed an increased mass and length of the small and large intestines in ZDF rats. RNAseq showed an increased expression of Pdk2 and Pdk4, which are involved in the regulation of glucose and fatty acid metabolism, and increased expression of genes involved in gluconeogenesis and peroxisomal beta-oxidation in jejunal mucosa. CONCLUSION: Intestinal enlargement in ZDF rats is likely driven by increased food intake, since (i) it also occurs in obese and normoglycemic Zucker fatty rats, and (ii) insulin treatment of STZ-induced diabetic rats reduced the food intake and mass of the small intestine. Results from RNAseq indicate that small intestinal epithelial cells in ZDF rats have developed insulin resistance, and support that a normal physiological effect of insulin in the enterocytes is the regulation of glucose metabolism.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Obesidad/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sacarasa/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Gluconeogénesis , Glucosa/metabolismo , Resistencia a la Insulina , Mucosa Intestinal/enzimología , Mucosa Intestinal/patología , Intestino Grueso/patología , Intestino Delgado/enzimología , Intestino Delgado/patología , Masculino , Fenotipo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Análisis de Secuencia de ARN , Transcriptoma , Regulación hacia Arriba
4.
Diabetol Metab Syndr ; 10: 4, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29410708

RESUMEN

BACKGROUND: In humans and animal models, excessive intake of dietary fat, fructose and cholesterol has been linked to the development of non-alcoholic fatty liver disease (NAFLD). However, the individual roles of the dietary components remain unclear. To investigate this further, we compared the effects of a high-fat diet, a high-fructose diet and a combination diet with added cholesterol on the development of NAFLD in rats. METHODS: Forty male Sprague-Dawley rats were randomized into four groups receiving either a control-diet (Control: 10% fat); a high-fat diet (HFD: 60% fat, 20% carbohydrate), a high-fructose diet [HFr: 10% fat, 70% carbohydrate (mainly fructose)] or a high-fat/high-fructose/high-cholesterol-diet (NASH: 40% fat, 40% carbohydrate (mainly fructose), 2% cholesterol) for 16 weeks. RESULTS: After 16 weeks, liver histology revealed extensive steatosis and inflammation in both NASH- and HFD-fed rats, while hepatic changes in HFr-rats were much more subtle. These findings were corroborated by significantly elevated hepatic triglyceride content in both NASH- (p < 0.01) and HFD-fed rats (p < 0.0001), elevated hepatic cholesterol levels in NASH-fed rats (p < 0.0001), but no changes in HFr-fed rats, compared to Control. On the contrary, only HFr-fed rats developed dyslipidemia as characterized by higher levels of plasma triglycerides compared to all other groups (p < 0.0001). Hepatic dysfunction and inflammation was confirmed in HFD-fed rats by elevated levels of hepatic MCP-1 (p < 0.0001), TNF-alpha (p < 0.001) and plasma ß-hydroxybutyrate (p < 0.0001), and in NASH-fed rats by elevated levels of hepatic MCP-1 (p < 0.01), increased hepatic macrophage infiltration (p < 0.001), and higher plasma levels of alanine aminotransferase (p < 0.0001) aspartate aminotransferase (p < 0.05), haptoglobin (p < 0.001) and TIMP-1 (p < 0.01) compared to Control. CONCLUSION: These findings show that dietary fat and cholesterol are the primary drivers of NAFLD development and progression in rats, while fructose mostly exerts its effect on the circulating lipid pool.

5.
PLoS One ; 8(11): e79710, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260289

RESUMEN

Obesity and type 2 diabetes are associated with an increased risk for development of certain forms of cancer, including colon cancer. The publication of highly controversial epidemiological studies in 2009 raised the possibility that use of the insulin analog glargine increases this risk further. However, it is not clear how mitogenic effects of insulin and insulin analogs measured in vitro correlate with tumor growth-promoting effects in vivo. The aim of this study was to examine possible growth-promoting effects of native human insulin, insulin X10 and IGF-1, which are considered positive controls in vitro, in a short-term animal model of an obesity- and diabetes-relevant cancer. We characterized insulin and IGF-1 receptor expression and the response to treatment with insulin, X10 and IGF-1 in the murine colon cancer cell line (MC38 cells) in vitro and in vivo. Furthermore, we examined pharmacokinetics and pharmacodynamics and monitored growth of MC38 cell allografts in mice with diet-induced obesity treated with human insulin, X10 and IGF-1. Treatment with X10 and IGF-1 significantly increased growth of MC38 cell allografts in mice with diet-induced obesity and we can therefore conclude that supra-pharmacological doses of the insulin analog X10, which is super-mitogenic in vitro and increased the incidence of mammary tumors in female rats in a 12-month toxicity study, also increase growth of tumor allografts in a short-term animal model.


Asunto(s)
Neoplasias del Colon/patología , Factor I del Crecimiento Similar a la Insulina/farmacología , Insulina/farmacología , Animales , Glucemia/efectos de los fármacos , Western Blotting , Línea Celular , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Humanos , Insulina/análogos & derivados , Insulina/metabolismo , Secreción de Insulina , Insulina Regular Humana/metabolismo , Ratones , Receptor IGF Tipo 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA