Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 22(5): 890-903, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23197655

RESUMEN

Spinocerebellar ataxia type 7 (SCA7) is a dominantly inherited neurodegenerative disorder caused by a CAG - polyglutamine (polyQ) repeat expansion in the ataxin-7 gene. In polyQ disorders, synaptic dysfunction and neurodegeneration may develop prior to symptom onset. However, conditional expression studies of polyQ disease models demonstrate that suppression of gene expression can yield complete reversal of established behavioral abnormalities. To determine if SCA7 neurological and neurodegenerative phenotypes are reversible, we crossed PrP-floxed-SCA7-92Q BAC transgenic mice with a tamoxifen-inducible Cre recombinase transgenic line, CAGGS-Cre-ER™. PrP-floxed-SCA7-92Q BAC;CAGGS-Cre-ER™ bigenic mice were treated with a single dose of tamoxifen 1 month after the onset of detectable ataxia, which resulted in ~50% reduction of polyQ-ataxin-7 expression. Tamoxifen treatment halted or reversed SCA7 motor symptoms, reduced ataxin-7 aggregation in Purkinje cells (PCs), and prevented loss of climbing fiber (CF)-PC synapses in comparison to vehicle-treated bigenic animals and tamoxifen-treated PrP-floxed-SCA7-92Q BAC single transgenic mice. Despite this phenotype rescue, reduced ataxin-7 expression did not result in full recovery of cerebellar molecular layer thickness or prevent Bergmann glia degeneration. These results demonstrate that suppression of mutant gene expression by only 50% in a polyQ disease model can have a significant impact on disease phenotypes, even when initiated after the onset of detectable behavioral deficits. The findings reported here are consistent with the emerging view that therapies aimed at reducing neurotoxic gene expression hold the potential to halt or reverse disease progression in afflicted patients, even after the onset of neurological disability.


Asunto(s)
Locomoción , Proteínas del Tejido Nervioso/genética , Péptidos , Ataxias Espinocerebelosas/genética , Animales , Ataxina-7 , Cerebelo/citología , Cerebelo/metabolismo , Cerebelo/fisiopatología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Locomoción/genética , Locomoción/fisiología , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Péptidos/genética , Péptidos/metabolismo , Células de Purkinje/citología , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ataxias Espinocerebelosas/fisiopatología , Expansión de Repetición de Trinucleótido
2.
J Neurosci ; 31(45): 16269-78, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-22072678

RESUMEN

Spinocerebellar ataxia type 7 (SCA7) is a dominantly inherited disorder characterized by cerebellum and brainstem neurodegeneration. SCA7 is caused by a CAG/polyglutamine (polyQ) repeat expansion in the ataxin-7 gene. We previously reported that directed expression of polyQ-ataxin-7 in Bergmann glia (BG) in transgenic mice leads to ataxia and non-cell-autonomous Purkinje cell (PC) degeneration. To further define the cellular basis of SCA7, we derived a conditional inactivation mouse model by inserting a loxP-flanked ataxin-7 cDNA with 92 repeats into the translational start site of the murine prion protein (PrP) gene in a bacterial artificial chromosome (BAC). The PrP-floxed-SCA7-92Q BAC mice developed neurological disease, and exhibited cerebellar degeneration and BG process loss. To inactivate polyQ-ataxin-7 expression in specific cerebellar cell types, we crossed PrP-floxed-SCA7-92Q BAC mice with Gfa2-Cre transgenic mice (to direct Cre to BG) or Pcp2-Cre transgenic mice (which yields Cre in PCs and inferior olive). Excision of ataxin-7 from BG partially rescued the behavioral phenotype, but did not prevent BG process loss or molecular layer thinning, while excision of ataxin-7 from PCs and inferior olive provided significantly greater rescue and prevented both pathological changes, revealing a non-cell-autonomous basis for BG pathology. When we prevented expression of mutant ataxin-7 in BG, PCs, and inferior olive by deriving Gfa2-Cre;Pcp2-Cre;PrP-floxed-SCA7-92Q BAC triple transgenic mice, we noted a dramatic improvement in SCA7 disease phenotypes. These findings indicate that SCA7 disease pathogenesis involves a convergence of alterations in a variety of different cell types to fully recapitulate the cerebellar degeneration.


Asunto(s)
Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Ataxias Espinocerebelosas/genética , Análisis de Varianza , Animales , Ataxina-7 , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/patología , Péptidos/genética , Fenotipo , Priones/genética , ARN Mensajero/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/fisiopatología
3.
Sci Transl Med ; 4(142): 142ra97, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22786682

RESUMEN

Huntington's disease (HD) is caused by CAG repeat expansions in the huntingtin (htt) gene, yielding proteins containing polyglutamine repeats that become misfolded and resist degradation. Previous studies demonstrated that mutant htt interferes with transcriptional programs coordinated by the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a regulator of mitochondrial biogenesis and oxidative stress. We tested whether restoration of PGC-1α could ameliorate the symptoms of HD in a mouse model. We found that PGC-1α induction virtually eliminated htt protein aggregation and ameliorated HD neurodegeneration in part by attenuating oxidative stress. PGC-1α promoted htt turnover and the elimination of protein aggregates by activating transcription factor EB (TFEB), a master regulator of the autophagy-lysosome pathway. TFEB alone was capable of reducing htt aggregation and neurotoxicity, placing PGC-1α upstream of TFEB and identifying these two molecules as important therapeutic targets in HD and potentially other neurodegenerative disorders caused by protein misfolding.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/prevención & control , Estrés Oxidativo/efectos de los fármacos , Péptidos/toxicidad , Transactivadores/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Enfermedad de Huntington/complicaciones , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fenotipo , Estructura Cuaternaria de Proteína , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción , Activación Transcripcional/genética , Expansión de Repetición de Trinucleótido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA