Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Syst Biol ; 20(3): 187-216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216754

RESUMEN

Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) an increased basal MET phosphorylation and a strong downregulation of the PI3K-AKT pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.


Asunto(s)
Carcinoma Hepatocelular , Hígado Graso , Neoplasias Hepáticas , Humanos , Fosforilación , Fosfatidilinositol 3-Quinasas/metabolismo , Hepatocitos/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Hígado Graso/metabolismo , Neoplasias Hepáticas/patología
2.
BMC Endocr Disord ; 24(1): 135, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090659

RESUMEN

BACKGROUND: Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is higher in men than in women. Hormonal and genetic causes may account for the sex differences in MASLD. Current human in vitro liver models do not sufficiently take the influence of biological sex and sex hormones into consideration. METHODS: Primary human hepatocytes (PHHs) were isolated from liver specimen of female and male donors and cultured with sex hormones (17ß-estradiol, testosterone and progesterone) for up to 72 h. mRNA expression levels of 8 hepatic lipid metabolism genes were analyzed by RT-qPCR. Sex hormones and their metabolites were determined in cell culture supernatants by LC-MS analyses. RESULTS: A sex-specific expression was observed for LDLR (low density lipoprotein receptor) with higher mRNA levels in male than female PHHs. All three sex hormones were metabolized by PHHs and the effects of hormones on gene expression levels varied depending on hepatocyte sex. Only in female PHHs, 17ß-estradiol treatment affected expression levels of PPARA (peroxisome proliferator-activated receptor alpha), LIPC (hepatic lipase) and APOL2 (apolipoprotein L2). Further changes in mRNA levels of female PHHs were observed for ABCA1 (ATP-binding cassette, sub-family A, member 1) after testosterone and for ABCA1, APOA5 (apolipoprotein A-V) and PPARA after progesterone treatment. Only the male PHHs showed changing mRNA levels for LDLR after 17ß-estradiol and for APOA5 after testosterone treatment. CONCLUSIONS: Male and female PHHs showed differences in their expression levels of hepatic lipid metabolism genes and their responsiveness towards sex hormones. Thus, cellular sex should be considered, especially when investigating the pathophysiological mechanisms of MASLD.


Asunto(s)
Hormonas Esteroides Gonadales , Hepatocitos , Metabolismo de los Lípidos , Humanos , Masculino , Femenino , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/efectos de los fármacos , Hormonas Esteroides Gonadales/farmacología , Hormonas Esteroides Gonadales/metabolismo , Células Cultivadas , Persona de Mediana Edad , Testosterona/farmacología , Testosterona/metabolismo , Estradiol/farmacología , Adulto , Progesterona/farmacología , Progesterona/metabolismo , Factores Sexuales
3.
Nat Commun ; 15(1): 5827, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992008

RESUMEN

The liver has the remarkable capacity to regenerate. In the clinic, regeneration is induced by portal vein embolization, which redirects portal blood flow, resulting in liver hypertrophy in locations with increased blood supply, and atrophy of embolized segments. Here, we apply single-cell and single-nucleus transcriptomics on healthy, hypertrophied, and atrophied patient-derived liver samples to explore cell states in the regenerating liver. Our data unveils pervasive upregulation of genes associated with developmental processes, cellular adhesion, and inflammation in post-portal vein embolization liver, disrupted portal-central hepatocyte zonation, and altered cell subtype composition of endothelial and immune cells. Interlineage crosstalk analysis reveals mesenchymal cells as an interaction hub between immune and endothelial cells, and highlights the importance of extracellular matrix proteins in liver regeneration. Moreover, we establish tissue-scale iterative indirect immunofluorescence imaging for high-dimensional spatial analysis of perivascular microenvironments, uncovering changes to tissue architecture in regenerating liver lobules. Altogether, our data is a rich resource revealing cellular and histological changes in human liver regeneration.


Asunto(s)
Embolización Terapéutica , Regeneración Hepática , Hígado , Vena Porta , Humanos , Regeneración Hepática/fisiología , Embolización Terapéutica/métodos , Hepatocitos/metabolismo , Análisis de la Célula Individual , Transcriptoma , Masculino , Células Endoteliales/metabolismo , Femenino , Hipertrofia , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA