Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 18(12): 4385-4392, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34699237

RESUMEN

Concentrated monoclonal antibody solutions exhibit high solution viscosity, which is experimentally measured to be ∼1-2 orders of magnitude higher than the viscosity of water. However, physical processes responsible for the high antibody viscosity are not fully understood. We show that fluid occlusion due to the trapped solvent molecules within the boundaries formed by the aggregated antibodies is responsible for the elevated solution viscosity. We develop a theory to predict the viscosity of monoclonal antibodies based on the geometry of the antibody molecule and the aggregate morphology. We validate our theory with experiments and highlight useful insights obtained from the viscosity equation which could help in controlling the drug viscosity at the molecular design stage itself.


Asunto(s)
Anticuerpos Monoclonales/química , Viscosidad , Agregado de Proteínas , Soluciones
2.
Langmuir ; 37(4): 1386-1398, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33478225

RESUMEN

In this work, we study the hydrodynamic behavior of monoclonal antibodies in the presence of silicone oil-water interfaces. We model the antibody molecules using a coarse-grained 24-bead model, where two beads are used to represent each antibody domain. We consider the spatial variation of the antibody polarity in our model as each bead represents a set of hydrophilic or hydrophobic amino acids. We use the dissipative particle dynamics scheme to represent the coarse-grained force field which governs the motion of the beads. In addition, interprotein interactions are modeled using an electrostatic force field. The model parameters are determined by comparing the structure factor against experimental structure factor data ranging from a low concentration regime (10 mg/mL) to a high concentration regime (150 mg/mL). Next, we conduct simulations for a suspension of antibody molecules in the presence of silicone oil-water interfaces. Protein loss from the bulk solution is noticed as the molecules adsorb at the interface. We observe dynamic cluster formation in the solution bulk and at the interface, as the antibody molecules self-associate along their trajectories. We quantify the aggregation using a density clustering algorithm and investigate the effect of the antibody concentration on the diffusivity of the antibody solution, aggregation propensity, and protein loss from the bulk. Our study shows that numerical simulations can be an important tool for understanding the molecular mechanisms driving protein aggregation near hydrophobic interfaces.


Asunto(s)
Anticuerpos Monoclonales , Aceites de Silicona , Interacciones Hidrofóbicas e Hidrofílicas , Siliconas , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA