Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Hum Mol Genet ; 32(9): 1483-1496, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36547263

RESUMEN

Astrocytes and brain endothelial cells are components of the neurovascular unit that comprises the blood-brain barrier (BBB) and their dysfunction contributes to pathogenesis in Huntington's disease (HD). Defining the contribution of these cells to disease can inform cell-type-specific effects and uncover new disease-modifying therapeutic targets. These cells express integrin (ITG) adhesion receptors that anchor the cells to the extracellular matrix (ECM) to maintain the integrity of the BBB. We used HD patient-derived induced pluripotent stem cell (iPSC) modeling to study the ECM-ITG interface in astrocytes and brain microvascular endothelial cells and found ECM-ITG dysregulation in human iPSC-derived cells that may contribute to the dysfunction of the BBB in HD. This disruption has functional consequences since reducing ITG expression in glia in an HD Drosophila model suppressed disease-associated CNS dysfunction. Since ITGs can be targeted therapeutically and manipulating ITG signaling prevents neurodegeneration in other diseases, defining the role of ITGs in HD may provide a novel strategy of intervention to slow CNS pathophysiology to treat HD.


Asunto(s)
Enfermedad de Huntington , Integrinas , Humanos , Integrinas/metabolismo , Células Endoteliales/metabolismo , Enfermedad de Huntington/patología , Neuroglía/metabolismo , Barrera Hematoencefálica/metabolismo , Matriz Extracelular/metabolismo
2.
Bioinformatics ; 38(21): 4934-4940, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36063034

RESUMEN

MOTIVATION: High-throughput fluorescent microscopy is a popular class of techniques for studying tissues and cells through automated imaging and feature extraction of hundreds to thousands of samples. Like other high-throughput assays, these approaches can suffer from unwanted noise and technical artifacts that obscure the biological signal. In this work, we consider how an experimental design incorporating multiple levels of replication enables the removal of technical artifacts from such image-based platforms. RESULTS: We develop a general approach to remove technical artifacts from high-throughput image data that leverages an experimental design with multiple levels of replication. To illustrate the methods, we consider microenvironment microarrays (MEMAs), a high-throughput platform designed to study cellular responses to microenvironmental perturbations. In application to MEMAs, our approach removes unwanted spatial artifacts and thereby enhances the biological signal. This approach has broad applicability to diverse biological assays. AVAILABILITY AND IMPLEMENTATION: Raw data are on synapse (syn2862345), analysis code is on github: gjhunt/mema_norm, a reproducible Docker image is available on dockerhub: gjhunt/mema_norm. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Artefactos , Ensayos Analíticos de Alto Rendimiento , Análisis por Micromatrices , Proyectos de Investigación
3.
Breast Cancer Res ; 18(1): 70, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27368372

RESUMEN

BACKGROUND: High mitotic activity is associated with the genesis and progression of many cancers. Small molecule inhibitors of mitotic apparatus proteins are now being developed and evaluated clinically as anticancer agents. With clinical trials of several of these experimental compounds underway, it is important to understand the molecular mechanisms that determine high mitotic activity, identify tumor subtypes that carry molecular aberrations that confer high mitotic activity, and to develop molecular markers that distinguish which tumors will be most responsive to mitotic apparatus inhibitors. METHODS: We identified a coordinately regulated mitotic apparatus network by analyzing gene expression profiles for 53 malignant and non-malignant human breast cancer cell lines and two separate primary breast tumor datasets. We defined the mitotic network activity index (MNAI) as the sum of the transcriptional levels of the 54 coordinately regulated mitotic apparatus genes. The effect of those genes on cell growth was evaluated by small interfering RNA (siRNA). RESULTS: High MNAI was enriched in basal-like breast tumors and was associated with reduced survival duration and preferential sensitivity to inhibitors of the mitotic apparatus proteins, polo-like kinase, centromere associated protein E and aurora kinase designated GSK462364, GSK923295 and GSK1070916, respectively. Co-amplification of regions of chromosomes 8q24, 10p15-p12, 12p13, and 17q24-q25 was associated with the transcriptional upregulation of this network of 54 mitotic apparatus genes, and we identify transcription factors that localize to these regions and putatively regulate mitotic activity. Knockdown of the mitotic network by siRNA identified 22 genes that might be considered as additional therapeutic targets for this clinically relevant patient subgroup. CONCLUSIONS: We define a molecular signature which may guide therapeutic approaches for tumors with high mitotic network activity.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Mitosis/efectos de los fármacos , Aurora Quinasas/antagonistas & inhibidores , Aurora Quinasas/genética , Aurora Quinasas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Amplificación de Genes , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Mitosis/genética , Pronóstico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Bibliotecas de Moléculas Pequeñas/farmacología , Resultado del Tratamiento , Quinasa Tipo Polo 1
4.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895265

RESUMEN

Paclitaxel is a standard of care neoadjuvant therapy for patients with triple negative breast cancer (TNBC); however, it shows limited benefit for locally advanced or metastatic disease. Here we used a coordinated experimental-computational approach to explore the influence of paclitaxel on the cellular and molecular responses of TNBC cells. We found that escalating doses of paclitaxel resulted in multinucleation, promotion of senescence, and initiation of DNA damage induced apoptosis. Single-cell RNA sequencing (scRNA-seq) of TNBC cells after paclitaxel treatment revealed upregulation of innate immune programs canonically associated with interferon response and downregulation of cell cycle progression programs. Systematic exploration of transcriptional responses to paclitaxel and cancer-associated microenvironmental factors revealed common gene programs induced by paclitaxel, IFNB, and IFNG. Transcription factor (TF) enrichment analysis identified 13 TFs that were both enriched based on activity of downstream targets and also significantly upregulated after paclitaxel treatment. Functional assessment with siRNA knockdown confirmed that the TFs FOSL1, NFE2L2 and ELF3 mediate cellular proliferation and also regulate nuclear structure. We further explored the influence of these TFs on paclitaxel-induced cell cycle behavior via live cell imaging, which revealed altered progression rates through G1, S/G2 and M phases. We found that ELF3 knockdown synergized with paclitaxel treatment to lock cells in a G1 state and prevent cell cycle progression. Analysis of publicly available breast cancer patient data showed that high ELF3 expression was associated with poor prognosis and enrichment programs associated with cell cycle progression. Together these analyses disentangle the diverse aspects of paclitaxel response and identify ELF3 upregulation as a putative biomarker of paclitaxel resistance in TNBC.

5.
Cell Signal ; 113: 110958, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37935340

RESUMEN

Microenvironment signals are potent determinants of cell fate and arbiters of tissue homeostasis, however understanding how different microenvironment factors coordinately regulate cellular phenotype has been experimentally challenging. Here we used a high-throughput microenvironment microarray comprised of 2640 unique pairwise signals to identify factors that support proliferation and maintenance of primary human mammary luminal epithelial cells. Multiple microenvironment factors that modulated luminal cell number were identified, including: HGF, NRG1, BMP2, CXCL1, TGFB1, FGF2, PDGFB, RANKL, WNT3A, SPP1, HA, VTN, and OMD. All of these factors were previously shown to modulate luminal cell numbers in painstaking mouse genetics experiments, or were shown to have a role in breast cancer, demonstrating the relevance and power of our high-dimensional approach to dissect key microenvironmental signals. RNA-sequencing of primary epithelial and stromal cell lineages identified the cell types that express these signals and the cognate receptors in vivo. Cell-based functional studies confirmed which effects from microenvironment factors were reproducible and robust to individual variation. Hepatocyte growth factor (HGF) was the factor most robust to individual variation and drove expansion of luminal cells via cKit+ progenitor cells, which expressed abundant MET receptor. Luminal cells from women who are genetically high risk for breast cancer had significantly more MET receptor and may explain the characteristic expansion of the luminal lineage in those women. In ensemble, our approach provides proof of principle that microenvironment signals that control specific cellular states can be dissected with high-dimensional cell-based approaches.


Asunto(s)
Neoplasias de la Mama , Células Epiteliales , Femenino , Humanos , Animales , Ratones , Células Epiteliales/metabolismo , Diferenciación Celular , Neoplasias de la Mama/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Microambiente Tumoral
6.
Nat Commun ; 14(1): 3450, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301933

RESUMEN

Identifying effective therapeutic treatment strategies is a major challenge to improving outcomes for patients with breast cancer. To gain a comprehensive understanding of how clinically relevant anti-cancer agents modulate cell cycle progression, here we use genetically engineered breast cancer cell lines to track drug-induced changes in cell number and cell cycle phase to reveal drug-specific cell cycle effects that vary across time. We use a linear chain trick (LCT) computational model, which faithfully captures drug-induced dynamic responses, correctly infers drug effects, and reproduces influences on specific cell cycle phases. We use the LCT model to predict the effects of unseen drug combinations and confirm these in independent validation experiments. Our integrated experimental and modeling approach opens avenues to assess drug responses, predict effective drug combinations, and identify optimal drug sequencing strategies.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , División Celular , Ciclo Celular , Combinación de Medicamentos , Línea Celular Tumoral
8.
Commun Biol ; 5(1): 255, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322205

RESUMEN

Image-based cell phenotyping relies on quantitative measurements as encoded representations of cells; however, defining suitable representations that capture complex imaging features is challenged by the lack of robust methods to segment cells, identify subcellular compartments, and extract relevant features. Variational autoencoder (VAE) approaches produce encouraging results by mapping an image to a representative descriptor, and outperform classical hand-crafted features for morphology, intensity, and texture at differentiating data. Although VAEs show promising results for capturing morphological and organizational features in tissue, single cell image analyses based on VAEs often fail to identify biologically informative features due to uninformative technical variation. Here we propose a multi-encoder VAE (ME-VAE) in single cell image analysis using transformed images as a self-supervised signal to extract transform-invariant biologically meaningful features, including emergent features not obvious from prior knowledge. We show that the proposed architecture improves analysis by making distinct cell populations more separable compared to traditional and recent extensions of VAE architectures and intensity measurements by enhancing phenotypic differences between cells and by improving correlations to other analytic modalities. Better feature extraction and image analysis methods enabled by the ME-VAE will advance our understanding of complex cell biology and enable discoveries previously hidden behind image complexity ultimately improving medical outcomes and drug discovery.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Análisis de la Célula Individual
9.
Commun Biol ; 5(1): 1066, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207580

RESUMEN

The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular signals, including growth factors, hormones, and extracellular matrix proteins. While these signals are normally tightly controlled, their dysregulation leads to phenotypic and molecular states associated with diverse diseases. To develop a detailed understanding of the linkage between molecular and phenotypic changes, we generated a comprehensive dataset that catalogs the transcriptional, proteomic, epigenomic and phenotypic responses of MCF10A mammary epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB and BMP2. Systematic assessment of the molecular and cellular phenotypes induced by these ligands comprise the LINCS Microenvironment (ME) perturbation dataset, which has been curated and made publicly available for community-wide analysis and development of novel computational methods ( synapse.org/LINCS_MCF10A ). In illustrative analyses, we demonstrate how this dataset can be used to discover functionally related molecular features linked to specific cellular phenotypes. Beyond these analyses, this dataset will serve as a resource for the broader scientific community to mine for biological insights, to compare signals carried across distinct molecular modalities, and to develop new computational methods for integrative data analysis.


Asunto(s)
Factor de Crecimiento Epidérmico , Proteómica , Factor de Crecimiento Epidérmico/farmacología , Proteínas de la Matriz Extracelular , Ligandos , Fenotipo
10.
Cancer Res ; 80(22): 5109-5120, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32938640

RESUMEN

Breast cancer progresses in a multistep process from primary tumor growth and stroma invasion to metastasis. Nutrient-limiting environments promote chemotaxis with aggressive morphologies characteristic of invasion. It is unknown how coexisting cells differ in their response to nutrient limitations and how this impacts invasion of the metapopulation as a whole. In this study, we integrate mathematical modeling with microenvironmental perturbation data to investigate invasion in nutrient-limiting environments inhabited by one or two cancer cell subpopulations. Subpopulations were defined by their energy efficiency and chemotactic ability. Invasion distance traveled by a homogeneous population was estimated. For heterogeneous populations, results suggest that an imbalance between nutrient efficacy and chemotactic superiority accelerates invasion. Such imbalance will spatially segregate the two populations and only one type will dominate at the invasion front. Only if these two phenotypes are balanced, the two subpopulations compete for the same space, which decelerates invasion. We investigate ploidy as a candidate biomarker of this phenotypic heterogeneity and discuss its potential to inform the dose of mTOR inhibitors (mTOR-I) that can inhibit chemotaxis just enough to facilitate such competition. SIGNIFICANCE: This study identifies the double-edged sword of high ploidy as a prerequisite to personalize combination therapies with cytotoxic drugs and inhibitors of signal transduction pathways such as mTOR-Is. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/22/5109/F1.large.jpg.


Asunto(s)
Neoplasias de la Mama/genética , Microambiente Celular/fisiología , Quimiotaxis/fisiología , Modelos Teóricos , Nutrientes , Poliploidía , Algoritmos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Línea Celular Tumoral , Quimiotaxis/efectos de los fármacos , Citotoxinas/farmacología , Metabolismo Energético , Femenino , Genómica , Humanos , Invasividad Neoplásica/fisiopatología , Fenotipo , Análisis de Secuencia de ARN , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
11.
J Comput Graph Stat ; 29(4): 929-941, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34531645

RESUMEN

Proper data transformation is an essential part of analysis. Choosing appropriate transformations for variables can enhance visualization, improve efficacy of analytical methods, and increase data interpretability. However determining appropriate transformations of variables from high-content imaging data poses new challenges. Imaging data produces hundreds of covariates from each of thousands of images in a corpus. Each of these covariates will have a different distribution and need a potentially different transformation. As such imaging data produces hundreds of covariates, determining an appropriate transformation for each of them is infeasible by hand. In this paper we explore simple, robust, and automatic transformations of high-content image data. A central application of our work is to microenvironment microarray bio-imaging data from the NIH LINCS program. We show that our robust transformations enhance visualization and improve the discovery of substantively relevant latent effects. These transformations enhance analysis of image features individually and also improve data integration approaches when combining together multiple features. We anticipate that the advantages of this work will likely also be realized in the analysis of data from other high-content and highly-multiplexed technologies like Cell Painting or Cyclic Immunofluorescence. Software and further analysis can be found at gjhunt.github.io/rr.

12.
Cell Syst ; 9(6): 580-588.e4, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31838146

RESUMEN

Cells sense and respond to signals in their local environment by activating signaling cascades that lead to phenotypic changes. Differences in these signals can be discriminated at the population level; however, single cells have been thought to be limited in their capacity to distinguish ligand doses due to signaling noise. We describe here the rational development of a genetically encoded FoxO1 sensor, which serves as a down-stream readout of insulin growth factor-phosphatidylinositol 3-kinase IGF-PI3K-AKT signaling pathway activity. With this reporter, we tracked individual cell responses to multiple IGF-I doses, pathway inhibitors, and repeated treatments. We observed that individual cells can discriminate multiple IGF-I doses, and these responses are sustained over time, are reproducible at the single-cell level, and display cell-to-cell heterogeneity. These studies imply that cell-to-cell variation in signaling responses is biologically meaningful and support the endeavor to elucidate mechanisms of cell signaling at the level of the individual cell.


Asunto(s)
Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Análisis de la Célula Individual/métodos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/fisiología , Células HeLa , Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Somatomedinas/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-31379401

RESUMEN

This work applies deep variational autoencoder learning architecture to study multi-cellular growth characteristics of human mammary epithelial cells in response to diverse microenvironment perturbations. Our approach introduces a novel method of visualizing learned feature spaces of trained variational autoencoding models that enables visualization of principal features in two dimensions. We find that unsupervised learned features more closely associate with expert annotation of cell colony organization than biologically-inspired hand-crafted features, demonstrating the utility of deep learning systems to meaningfully characterize features of multi-cellular growth characteristics in a fully unsupervised and data-driven manner.

14.
J Vis Exp ; (147)2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31180341

RESUMEN

Understanding the impact of the microenvironment on the phenotype of cells is a difficult problem due to the complex mixture of both soluble growth factors and matrix-associated proteins in the microenvironment in vivo. Furthermore, readily available reagents for the modeling of microenvironments in vitro typically utilize complex mixtures of proteins that are incompletely defined and suffer from batch to batch variability. The microenvironment microarray (MEMA) platform allows for the assessment of thousands of simple combinations of microenvironment proteins for their impact on cellular phenotypes in a single assay. The MEMAs are prepared in well plates, which allows the addition of individual ligands to separate wells containing arrayed extracellular matrix (ECM) proteins. The combination of the soluble ligand with each printed ECM forms a unique combination. A typical MEMA assay contains greater than 2,500 unique combinatorial microenvironments that cells are exposed to in a single assay. As a test case, the breast cancer cell line MCF7 was plated on the MEMA platform. Analysis of this assay identified factors that both enhance and inhibit the growth and proliferation of these cells. The MEMA platform is highly flexible and can be extended for use with other biological questions beyond cancer research.


Asunto(s)
Análisis por Micromatrices/métodos , Neoplasias/patología , Microambiente Tumoral , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Ligandos , Células MCF-7 , Neoplasias/metabolismo , Fenotipo
15.
Cell Syst ; 6(3): 329-342.e6, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29550255

RESUMEN

Extrinsic signals are implicated in breast cancer resistance to HER2-targeted tyrosine kinase inhibitors (TKIs). To examine how microenvironmental signals influence resistance, we monitored TKI-treated breast cancer cell lines grown on microenvironment microarrays composed of printed extracellular matrix proteins supplemented with soluble proteins. We tested ∼2,500 combinations of 56 soluble and 46 matrix microenvironmental proteins on basal-like HER2+ (HER2E) or luminal-like HER2+ (L-HER2+) cells treated with the TKIs lapatinib or neratinib. In HER2E cells, hepatocyte growth factor, a ligand for MET, induced resistance that could be reversed with crizotinib, an inhibitor of MET. In L-HER2+ cells, neuregulin1-ß1 (NRG1ß), a ligand for HER3, induced resistance that could be reversed with pertuzumab, an inhibitor of HER2-HER3 heterodimerization. The subtype-specific responses were also observed in 3D cultures and murine xenografts. These results, along with bioinformatic pathway analysis and siRNA knockdown experiments, suggest different mechanisms of resistance specific to each HER2+ subtype: MET signaling for HER2E and HER2-HER3 heterodimerization for L-HER2+ cells.


Asunto(s)
Genes erbB-2/efectos de los fármacos , Genes erbB-2/genética , Microambiente Tumoral/genética , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Bases de Datos Genéticas , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes erbB-2/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Lapatinib/farmacología , Células MCF-7 , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Quinazolinas/farmacología , Quinolinas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Oncotarget ; 8(67): 111084-111095, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29340039

RESUMEN

Recent work demonstrates that castration-resistant prostate cancer (CRPC) tumors harbor countless genomic aberrations that control many hallmarks of cancer. While some specific mutations in CRPC may be actionable, many others are not. We hypothesized that genomic aberrations in cancer may operate in concert to promote drug resistance and tumor progression, and that organization of these genomic aberrations into therapeutically targetable pathways may improve our ability to treat CRPC. To identify the molecular underpinnings of enzalutamide-resistant CRPC, we performed transcriptional and copy number profiling studies using paired enzalutamide-sensitive and resistant LNCaP prostate cancer cell lines. Gene networks associated with enzalutamide resistance were revealed by performing an integrative genomic analysis with the PAthway Representation and Analysis by Direct Reference on Graphical Models (PARADIGM) tool. Amongst the pathways enriched in the enzalutamide-resistant cells were those associated with MEK, EGFR, RAS, and NFKB. Functional validation studies of 64 genes identified 10 candidate genes whose suppression led to greater effects on cell viability in enzalutamide-resistant cells as compared to sensitive parental cells. Examination of a patient cohort demonstrated that several of our functionally-validated gene hits are deregulated in metastatic CRPC tumor samples, suggesting that they may be clinically relevant therapeutic targets for patients with enzalutamide-resistant CRPC. Altogether, our approach demonstrates the potential of integrative genomic analyses to clarify determinants of drug resistance and rational co-targeting strategies to overcome resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA