Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 7(5): e1002030, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21589902

RESUMEN

Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs.


Asunto(s)
Proteínas de la Nucleocápside/química , Multimerización de Proteína , ARN Viral/química , Ribonucleoproteínas/química , Virus de la Fiebre del Valle del Rift/fisiología , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X/métodos , ADN Complementario/genética , Humanos , Microscopía Electrónica , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/aislamiento & purificación , Proteínas de la Nucleocápside/ultraestructura , Dominios y Motivos de Interacción de Proteínas , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/ultraestructura , Virus de la Fiebre del Valle del Rift/química , Virus de la Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/ultraestructura , Alineación de Secuencia , Resonancia por Plasmón de Superficie/métodos , Ensamble de Virus
2.
Proc Natl Acad Sci U S A ; 107(46): 20075-80, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21041632

RESUMEN

Nonsegmented negative-strand (NNS) RNA viruses initiate infection by delivering into the host cell a highly specialized RNA synthesis machine comprising the genomic RNA completely encapsidated by the viral nucleocapsid protein and associated with the viral polymerase. The catalytic core of this protein-RNA complex is a 250-kDa multifunctional large (L) polymerase protein that contains enzymatic activities for nucleotide polymerization as well as for each step of mRNA cap formation. Working with vesicular stomatitis virus (VSV), a prototype of NNS RNA viruses, we used negative stain electron microscopy (EM) to obtain a molecular view of L, alone and in complex with the viral phosphoprotein (P) cofactor. EM analysis, combined with proteolytic digestion and deletion mapping, revealed the organization of L into a ring domain containing the RNA polymerase and an appendage of three globular domains containing the cap-forming activities. The capping enzyme maps to a globular domain, which is juxtaposed to the ring, and the cap methyltransferase maps to a more distal and flexibly connected globule. Upon P binding, L undergoes a significant rearrangement that may reflect an optimal positioning of its functional domains for transcription. The structural map of L provides new insights into the interrelationship of its various domains, and their rearrangement on P binding that is likely important for RNA synthesis. Because the arrangement of conserved regions involved in catalysis is homologous, the structural insights obtained for VSV L likely extend to all NNS RNA viruses.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Vesiculovirus/enzimología , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosfoproteínas/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Virales/química , Proteínas Virales/ultraestructura
3.
Cell Rep ; 42(8): 112936, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37552602

RESUMEN

Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastasis, which is the leading cause of death in breast cancer patients. Here, we show that Cdc42 GTPase-activating protein (CdGAP) promotes tumor formation and metastasis to lungs in the HER2-positive (HER2+) murine breast cancer model. CdGAP facilitates intravasation, extravasation, and growth at metastatic sites. CdGAP depletion in HER2+ murine primary tumors mediates crosstalk with a Dlc1-RhoA pathway and is associated with a transforming growth factor ß (TGF-ß)-induced EMT transcriptional signature. CdGAP is positively regulated by TGF-ß signaling during EMT and interacts with the adaptor talin to modulate focal adhesion dynamics and integrin activation. Moreover, HER2+ breast cancer patients with high CdGAP mRNA expression combined with a high TGF-ß-EMT signature are more likely to present lymph node invasion. Our results suggest CdGAP as a candidate therapeutic target for HER2+ metastatic breast cancer by inhibiting TGF-ß and integrin/talin signaling pathways.


Asunto(s)
Neoplasias de la Mama , Factor de Crecimiento Transformador beta , Humanos , Animales , Ratones , Femenino , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama/patología , Talina/metabolismo , Proteínas Portadoras , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Integrinas/metabolismo , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Metástasis de la Neoplasia , Movimiento Celular
4.
J Cell Biol ; 167(4): 687-98, 2004 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-15557120

RESUMEN

Netrin-1 acts as a chemoattractant molecule to guide commissural neurons (CN) toward the floor plate by interacting with the receptor deleted in colorectal cancer (DCC). The molecular mechanisms underlying Netrin-1-DCC signaling are still poorly characterized. Here, we show that DCC is phosphorylated in vivo on tyrosine residues in response to Netrin-1 stimulation of CN and that the Src family kinase inhibitors PP2 and SU6656 block both Netrin-1-dependent phosphorylation of DCC and axon outgrowth. PP2 also blocks the reorientation of Xenopus laevis retinal ganglion cells that occurs in response to Netrin-1, which suggests an essential role of the Src kinases in Netrin-1-dependent orientation. Fyn, but not Src, is able to phosphorylate the intracellular domain of DCC in vitro, and we demonstrate that Y1418 is crucial for DCC axon outgrowth function. Both DCC phosphorylation and Netrin-1-induced axon outgrowth are impaired in Fyn(-/-) CN and spinal cord explants. We propose that DCC is regulated by tyrosine phosphorylation and that Fyn is essential for the response of axons to Netrin-1.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Conos de Crecimiento/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Retina/embriología , Médula Espinal/embriología , Proteínas Supresoras de Tumor/metabolismo , Familia-src Quinasas/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Receptor DCC , Inhibidores Enzimáticos/farmacología , Femenino , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Masculino , Ratones , Ratones Noqueados , Factores de Crecimiento Nervioso/farmacología , Netrina-1 , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fyn , Ratas , Receptores de Superficie Celular , Retina/citología , Retina/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/citología , Médula Espinal/metabolismo , Tirosina/metabolismo , Proteínas de Xenopus , Xenopus laevis , Familia-src Quinasas/antagonistas & inhibidores
5.
Mol Cell Biol ; 25(15): 6314-29, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16024771

RESUMEN

Rho GTPases regulate multiple cellular processes affecting both cell proliferation and cytoskeletal dynamics. Their cycling between inactive GDP- and active GTP-bound states is tightly regulated by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We have previously identified CdGAP (for Cdc42 GTPase-activating protein) as a specific GAP for Rac1 and Cdc42. CdGAP consists of an N-terminal RhoGAP domain and a C-terminal proline-rich region. In addition, CdGAP is a member of the impressively large number of mammalian RhoGAP proteins that is well conserved among both vertebrates and invertebrates. In mice, we find two predominant isoforms of CdGAP differentially expressed in specific tissues. We report here that CdGAP is highly phosphorylated in vivo on serine and threonine residues. We find that CdGAP is phosphorylated downstream of the MEK-extracellular signal-regulated kinase (ERK) pathway in response to serum or platelet-derived growth factor stimulation. Furthermore, CdGAP interacts with and is phosphorylated by ERK-1 and RSK-1 in vitro. A putative DEF (docking for ERK FXFP) domain located in the proline-rich region of CdGAP is required for efficient binding and phosphorylation by ERK1/2. We identify Thr776 as an in vivo target site of ERK1/2 and as an important regulatory site of CdGAP activity. Together, these data suggest that CdGAP is a novel substrate of ERK1/2 and mediates cross talk between the Ras/mitogen-activated protein kinase pathway and regulation of Rac1 activity.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Fibroblastos/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Datos de Secuencia Molecular , Mutación , Fosforilación , Prolina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología , Estructura Terciaria de Proteína , Proteína de Unión al GTP rac1/metabolismo , Proteínas ras/metabolismo
6.
Biol Cell ; 98(8): 445-56, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16519628

RESUMEN

BACKGROUND INFORMATION: Rho GTPases regulate a wide range of cellular functions affecting both cell proliferation and cytoskeletal dynamics. They cycle between inactive GDP- and active GTP-bound states. This cycle is tightly regulated by GEFs (guanine nucleotide-exchange factors) and GAPs (GTPase-activating proteins). Mouse CdGAP (mCdc42 GTPase-activating protein) has been previously identified and characterized as a specific GAP for Rac1 and Cdc42, but not for RhoA. It consists of an N-terminal RhoGAP domain and a C-terminal proline-rich region. In addition, CdGAP-related genes are present in both vertebrates and invertebrates. We have recently reported that two predominant isoforms of CdGAP (250 and 90 kDa) exist in specific mouse tissues. RESULTS: In the present study, we have identified and characterized human CdGAP (KIAA1204) which shares 76% sequence identity to the long isoform of mCdGAP (mCdGAP-l). Similar to mCdGAP, it is active in vitro and in vivo on both Cdc42 and Rac1, but not RhoA, and is phosphorylated in vivo on serine and threonine residues. In contrast with mCdGAP-l, human CdGAP interacts with ERK1/2 (extracellular-signal-regulated kinase 1/2) through a region that does not involve a DEF (docking site for ERK Phe-Xaa-Phe-Pro) domain. Also, the tissue distribution of CdGAP proteins appears to be different between human and mouse species. Interestingly, we found that CdGAP proteins cause membrane blebbing in COS-7 cells. CONCLUSIONS: Our results suggest that CdGAP properties are well conserved between human and mouse species, and that CdGAP may play an unexpected role in apoptosis.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Fosfoproteínas/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Células 3T3 , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Feto/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Datos de Secuencia Molecular , Fosfoproteínas/genética , Fosfoproteínas/fisiología , Fosforilación , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Serina/metabolismo , Treonina/metabolismo , Transfección , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rhoA/genética
7.
J Biol Chem ; 277(8): 6366-73, 2002 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-11744688

RESUMEN

The Rho GTPases RhoA, Rac1, and Cdc42 play a major role in regulating the reorganization of the actin cytoskeleton. We recently identified CdGAP, a novel GTPase-activating protein with activity toward Rac1 and Cdc42. CdGAP consists of a N-terminal GAP domain, a central domain, and a C-terminal proline-rich domain. Here we show that through a subset of its Src homology 3 domains, the endocytic protein intersectin interacts with CdGAP. In platelet-derived growth factor-stimulated Swiss 3T3 cells, intersectin co-localizes with CdGAP and inhibits its GAP activity toward Rac1. Intersectin-Src homology 3 also inhibits CdGAP activity in GAP assays in vitro. Although the C-terminal proline-rich domain of CdGAP is required for the regulation of its GAP activity by intersectin both in vivo and in vitro, it is not necessary for CdGAP-intersectin interaction. Our data suggest that the central domain of CdGAP is required for CdGAP-intersectin interaction. Thus, we propose a model in which intersectin binding results in a change of CdGAP conformation involving the proline-rich domain that leads to the inhibition of its GAP activity. These observations provide the first demonstration of a direct regulation of RhoGAP activity through a protein-protein interaction and suggest a function for intersectin in Rac1 regulation and actin dynamics.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Proteínas Portadoras/metabolismo , Endocitosis/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Células 3T3 , Animales , Sitios de Unión , Biotinilación , Células COS , Proteínas Portadoras/química , Proteínas Portadoras/genética , Clonación Molecular , Cricetinae , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Cinética , Ratones , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transfección , Proteínas de Unión al GTP rho/metabolismo , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA