Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32699460

RESUMEN

Cine cardiac magnetic resonance imaging (CMRI), the current gold standard for cardiac function analysis, provides images with high spatio-temporal resolution. Computing clinical cardiac parameters like ventricular blood-pool volumes, ejection fraction and myocardial mass from these high resolution images is an important step in cardiac disease diagnosis, therapy planning and monitoring cardiac health. An accurate segmentation of left ventricle blood-pool, myocardium and right ventricle blood-pool is crucial for computing these clinical cardiac parameters. U-Net inspired models are the current state-of-the-art for medical image segmentation. SegAN, a novel adversarial network architecture with multi-scale loss function, has shown superior segmentation performance over U-Net models with single-scale loss function. In this paper, we compare the performance of stand-alone U-Net models and U-Net models in SegAN framework for segmentation of left ventricle blood-pool, myocardium and right ventricle blood-pool from the 2017 ACDC segmentation challenge dataset. The mean Dice scores achieved by training U-Net models was on the order of 89.03%, 89.32% and 88.71% for left ventricle blood-pool, myocardium and right ventricle blood-pool, respectively. The mean Dice scores achieved by training the U-Net models in SegAN framework are 91.31%, 88.68% and 90.93% for left ventricle blood-pool, myocardium and right ventricle blood-pool, respectively.

2.
Artículo en Inglés | MEDLINE | ID: mdl-32699463

RESUMEN

Left ventricular ejection fraction (LVEF) assessment is instrumental for cardiac health diagnosis, patient management, and patient eligibility for participation in clinical studies. Due to its non-invasiveness and low operational cost, ultrasound (US) imaging is the most commonly used imaging modality to image the heart and assess LVEF. Even though 3D US imaging technology is becoming more available, cardiologists dominantly use 2D US imaging to visualize the LV blood pool and interpret its area changes between end-systole and end-diastole. Our previous work showed that LVEF estimates based on area changes are significantly lower than the true volume-based estimates by as much as 13%,1 which could lead to unnecessary and costly therapeutic decisions. Acquiring volumetric information about the LV blood pool necessitates either time-consuming 3D reconstruction or 3D US image acquisition. Here, we propose a method that leverages on a statistical shape model (SSM) constructed from 13 landmarks depicting the LV endocardial border to estimate a new patient's LV volume and LVEF. Two methods to estimate the 3D LV geometry with and without size normalization were employed. The SSM was built using the 13 landmarks from 50 training patient image datasets. Subsequently, the Mahalanobis distance (with size normalization) or the vector distance (without size normalization) between an incoming patient's LV landmarks and each shape in the SSM were used to determine the weights each training patient contributed to describing the new, incoming patient's LV geometry and associated blood pool volume. We tested the proposed method to estimate the LV volumes and LVEF for 16 new test patients. The estimated LVEFs based on Mahalanobis distance and vector distance were within 2.9% and 1.1%, respectively, of the ground truth LVEFs calculated from the 3D reconstructed LV volumes. Furthermore, the viability of using fewer principal components (PCs) to estimate the LV volume was explored by reducing the number of PCs retained when projecting landmarks onto PCA space. LVEF estimated based on 3 PCs, 5 PCs, and 10 PCs are within 6.6%, 5.4%, and 3.3%, respectively, of LVEF estimates using the full set of 39 PCs.

3.
Artículo en Inglés | MEDLINE | ID: mdl-31179448

RESUMEN

Segmentation of the left ventricle and quantification of various cardiac contractile functions is crucial for the timely diagnosis and treatment of cardiovascular diseases. Traditionally, the two tasks have been tackled independently. Here we propose a convolutional neural network based multi-task learning approach to perform both tasks simultaneously, such that, the network learns better representation of the data with improved generalization performance. Probabilistic formulation of the problem enables learning the task uncertainties during the training, which are used to automatically compute the weights for the tasks. We performed a five fold cross-validation of the myocardium segmentation obtained from the proposed multi-task network on 97 patient 4-dimensional cardiac cine-MRI datasets available through the STA-COM LV segmentation challenge against the provided gold-standard myocardium segmentation, obtaining a Dice overlap of 0.849 ± 0.036 and mean surface distance of 0.274 ± 0.083 mm, while simultaneously estimating the myocardial area with mean absolute difference error of 205 ± 198 mm2.

4.
Med Phys ; 46(12): 5637-5651, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31598971

RESUMEN

PURPOSE: Cardiac image segmentation is a critical process for generating personalized models of the heart and for quantifying cardiac performance parameters. Fully automatic segmentation of the left ventricle (LV), the right ventricle (RV), and the myocardium from cardiac cine MR images is challenging due to variability of the normal and abnormal anatomy, as well as the imaging protocols. This study proposes a multi-task learning (MTL)-based regularization of a convolutional neural network (CNN) to obtain accurate segmenation of the cardiac structures from cine MR images. METHODS: We train a CNN network to perform the main task of semantic segmentation, along with the simultaneous, auxiliary task of pixel-wise distance map regression. The network also predicts uncertainties associated with both tasks, such that their losses are weighted by the inverse of their corresponding uncertainties. As a result, during training, the task featuring a higher uncertainty is weighted less and vice versa. The proposed distance map regularizer is a decoder network added to the bottleneck layer of an existing CNN architecture, facilitating the network to learn robust global features. The regularizer block is removed after training, so that the original number of network parameters does not change. The trained network outputs per-pixel segmentation when a new patient cine MR image is provided as an input. RESULTS: We show that the proposed regularization method improves both binary and multi-class segmentation performance over the corresponding state-of-the-art CNN architectures. The evaluation was conducted on two publicly available cardiac cine MRI datasets, yielding average Dice coefficients of 0.84 ± 0.03 and 0.91 ± 0.04. We also demonstrate improved generalization performance of the distance map regularized network on cross-dataset segmentation, showing as much as 42% improvement in myocardium Dice coefficient from 0.56 ± 0.28 to 0.80 ± 0.14. CONCLUSIONS: We have presented a method for accurate segmentation of cardiac structures from cine MR images. Our experiments verify that the proposed method exceeds the segmentation performance of three existing state-of-the-art methods. Furthermore, several cardiac indices that often serve as diagnostic biomarkers, specifically blood pool volume, myocardial mass, and ejection fraction, computed using our method are better correlated with the indices computed from the reference, ground truth segmentation. Hence, the proposed method has the potential to become a non-invasive screening and diagnostic tool for the clinical assessment of various cardiac conditions, as well as a reliable aid for generating patient specific models of the cardiac anatomy for therapy planning, simulation, and guidance.


Asunto(s)
Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Cinemagnética , Redes Neurales de la Computación
5.
Funct Imaging Model Heart ; 11504: 415-424, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32699845

RESUMEN

Cardiac magnetic resonance imaging (CMRI) provides high resolution images ideal for assessing cardiac function and diagnosis of cardiovascular diseases. To assess cardiac function, estimation of ejection fraction, ventricular volume, mass and stroke volume are crucial, and the segmentation of left ventricle from CMRI is the first critical step. Fully convolutional neural network architectures have proved to be very efficient for medical image segmentation, with U-Net inspired architecture as the current state-of-the-art. Generative adversarial networks (GAN) inspired architectures have recently gained popularity in medical image segmentation with one of them being SegAN, a novel end-to-end adversarial neural network architecture. In this paper, we investigate SegAN with three different types of U-Net inspired architectures for left ventricle segmentation from cardiac MRI data. We performed our experiments on the 2017 ACDC segmentation challenge dataset. Our results show that the performance of U-Net architectures is better when trained in the SegAN framework than when trained stand-alone. The mean Dice scores achieved for three different U-Net architectures trained in the SegAN framework was on the order of 93.62%, 92.49% and 94.57%, showing a significant improvement over their Dice scores following stand-alone training - 92.58%), 91.46% and 93.81%, respectively.

6.
Artículo en Inglés | MEDLINE | ID: mdl-31186596

RESUMEN

Calculating left ventricular ejection fraction (LVEF) accurately is crucial for the clinical diagnosis of cardiac disease, patient management, or other therapeutic treatment decisions. The measure of a patient's LVEF often affects their candidacy for cardiovascular intervention. Ultrasound (US) is one of the imaging modalities used to non-invasively assess LVEF, and it is the most common and least expensive. Despite the advances in 3D US transducer technology, only limited US machines are equipped with such transducer to enable true 3D US image acquisition. Thus, 2D US images remain to be widely used by cardiologists to image the heart and their interpretation is inherently based on two dimensional information immediately available in the US images. Past knowledge indicates that visual estimation of the LVEF based on the area changes of the left ventricle blood pool between systole and diastole (as depicted in 2D ultrasound images) may significantly underestimate the ejection fraction, rendering some patients as suitable candidates for potentially unnecessary interventions or implantation of assistive devices. True LVEF should be calculated based on changes in LV volumes, but equipment and time constraint limit the current technique to assess 3D LV geometry. The estimation of the systolic and diastolic blood pool volumes requires additional work beyond a simple visual assessment of the blood pool area changed in the 2D US images. Specifically, following the manual segmentation of the endocardial LV border, 3D volume would be assessed by reconstructing a LV volume from multiple tomographic views. In this work, we leverage on two idealized mathematical models of the left ventricle - a truncated prolate spheroid (TPS) and a paraboloid geometric model to characterize the LV shape according to the range of possible dimensions gathered from our patient-specific multi-plane US imaging data. The objective of this work is to reveal the necessity of calculating LVEFs based on volumes by showing that LVEF estimated using area changes underestimate the LVEF computed using volume changes. Additionally, we present a method to reconstruct the LV volume from 2D blood pool representations identified in the multi-plane 2D US images and use the reconstructed 3D volume throughout the cardiac cycle to estimate the LVEF. Our preliminary results show that the area-based LVEF significantly underestimates the true volume-based LVEF across both the theoretical simulations using idealized geometric models of the LV shape, as well as the patient-specific US imaging data. Specifically, both the TPS and paraboloid model showed an area-based LVEF of 41.3 ± 4.7% and a volume-based LVEF of 55.4 ± 5.7%, while the US image data showed an area-based LVEF of 34.7 ± 11.9% and a volume-based LVEF of 48.0 ± 14.0%. In summary, the area-based LVEF estimations using both the idealized TPS and paraboloid models was 14.1% lower than volume- based LVEF calculations using corresponding models. Furthermore, the area-based LVEF based on reconstructed LV volumes are 13.3% lower than volume-based estimates. Evidently, there is a need to further investigate a method to enable practical volume-based LVEF calculations to avoid the need for clinicians to estimate LVEF based on visual, holistic assessment of the blood pool area changes that improperly infer volumetric blood pool changes.

7.
VipIMAGE 2019 (2019) ; 34: 540-550, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32661520

RESUMEN

Assessing the left ventricular ejection fraction (LVEF) accurately requires 3D volumetric data of the LV. Cardiologists either have no access to 3D ultrasound (US) systems or prefer to visually estimate LVEF based on 2D US images. To facilitate the consistent estimation of the end-diastolic and end-systolic blood pool volume and LVEF based on 3D data without extensive complicated manual input, we propose a statistical shape model (SSM) based on 13 key anchor points-the LV apex (1), mitral valve hinges (6), and the midpoints of the endocardial contours (6)-identified from the LV endocardial contour of the tri-plane 2D US images. We use principal component analysis (PCA) to identify the principle modes of variation needed to represent the LV shapes, which enables us to estimate an incoming LV as a linear combination of the principle components (PC). For a new, incoming patient image, its 13 anchor points are projected onto the PC space; its shape is compared to each LV shape in the SSM based on Mahalanobis distance, which is normalized with respect to the LV size, as well as direct vector distance (i.e., PCA distance), without any size normalization. These distances are used to determine the weight each training shape in the SSM contributes to the description of the new patient LV shape. Finally, the new patient's LV systolic and diastolic volumes are estimated as the weighted average of the training volumes in the SSM. To assess our proposed method, we compared the SSM-based estimates of diastolic, systolic, stroke volumes, and LVEF with those computed directly from 16 tri-plane 2D US imaging datasets using the GE Echo-Pac PC clinical platform. The estimated LVEF based on Mahalanobis distance and PCA distance were within 6.8% and 1.7% of the reference LVEF computed using the GE Echo-Pac PC clinical platform.

8.
Artículo en Inglés | MEDLINE | ID: mdl-30294064

RESUMEN

Accurate segmentation of the left ventricle (LV) blood-pool and myocardium is required to compute cardiac function assessment parameters or generate personalized cardiac models for pre-operative planning of minimally invasive therapy. Cardiac Cine Magnetic Resonance Imaging (MRI) is the preferred modality for high resolution cardiac imaging thanks to its capability of imaging the heart throughout the cardiac cycle, while providing tissue contrast superior to other imaging modalities without ionizing radiation. However, there exists an inevitable misalignment between the slices in cine MRI due to the 2D + time acquisition, rendering 3D segmentation methods ineffective. A large part of published work on cardiac MR image segmentation focuses on 2D segmentation methods that yield good results in mid-slices, however with less accurate results for the apical and basal slices. Here, we propose an algorithm to correct for the slice misalignment using a Convolutional Neural Network (CNN)-based regression method, and then perform a 3D graph-cut based segmentation of the LV using atlas shape prior. Our algorithm is able to reduce the median slice misalignment error from 3.13 to 2.07 pixels, and obtain the blood-pool segmentation with an accuracy characterized by a 0.904 mean dice overlap and 0.56 mm mean surface distance with respect to the gold-standard blood-pool segmentation for 9 test cine MR datasets.

9.
Artículo en Inglés | MEDLINE | ID: mdl-31231723

RESUMEN

Left ventricular ejection fraction (LVEF) is a critical measure of cardiac health commonly acquired in clinical practice, which serves as the basis for cardiovascular therapeutic treatment. Ultrasound (US) imaging of the heart is the most common, least expensive, reliable and non-invasive modality to assess LVEF. Cardiologists, in practice, persistently use 2D US images to provide visual estimates of LVEF, which are based on 2D information embedded in the US images by examining the area changes in LV blood pool between diastole and systole. There has been some anecdotal evidence that visual estimation of the LVEF based on the area changes of the LV blood pool significantly underestimate true LVEF. True LVEF should be calculated based on changes in LV volumes between diastole and systole. In this project, we utilized both idealized models of the LV geometry - a truncated prolate spheroid (TPS) and a paraboloid model - to represent the LV anatomy. Cross-sectional areas and volumes of simulated LV shapes using both models were calculated to compare the LVEF. Further, a LV reconstruction algorithm was employed to build the LV blood pool volume in both systole and diastole from multi-plane 2D US imaging data. Our mathematical models yielded an area-based LVEF of 41 4.7% and a volume-based LVEF of 55 ±5.7%, while the 3D recon-struction model showed an area-based LVEF of 35 11.9% and a volume-based LVEF of 48.0 ± 14.0%. In summary, the area-based LVEF using all three models ±underestimate the volume-based LVEF using corresponding models by 13% to 14%. This preliminary study confirms both mathematically and empirically that area-based LVEF estimates indeed underestimate the true volume-based LVEF measurements and suggests that true volumetric measurements of the LV blood pool must be computed to correctly assess cardiac LVEF.

10.
Healthc Technol Lett ; 4(5): 174-178, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29184660

RESUMEN

Craniosynostosis is a congenital malformation of the infant skull typically treated via corrective surgery. To accurately quantify the extent of deformation and identify the optimal correction strategy, the patient-specific skull model extracted from a pre-surgical computed tomography (CT) image needs to be registered to an atlas of head CT images representative of normal subjects. Here, the authors present a robust multi-stage, multi-resolution registration pipeline to map a patient-specific CT image to the atlas space of normal CT images. The proposed registration pipeline first performs an initial optimisation at very low resolution to yield a good initial alignment that is subsequently refined at high resolution. They demonstrate the robustness of the proposed method by evaluating its performance on 560 head CT images of 320 normal subjects and 240 craniosynostosis patients and show a success rate of 92.8 and 94.2%, respectively. Their method achieved a mean surface-to-surface distance between the patient and template skull of <2.5 mm in the targeted skull region across both the normal subjects and patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA