Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 24(25): 6606-6616, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29655185

RESUMEN

Cleavage of heparan sulfate proteoglycans (HSPGs) by the enzyme heparanase modulates tumour-related events including angiogenesis, cell invasion, and metastasis. Metalloshielding of heparan sulfate (HS) by positively charged polynuclear platinum complexes (PPCs) effectively inhibits physiologically critical HS functions. Studies using bacterial P. heparinus heparinase II showed that a library of Pt complexes varying in charge and nuclearity and the presence or absence of a dangling amine inhibits the cleavage activity of the enzyme on the synthetic pentasaccharide, Fondaparinux (FPX). Charge-dependent affinity of PPC for FPX was seen in competition assays with methylene blue and ethidium bromide. The dissociation constant (Kd ) of TriplatinNC for FPX was directly measured by isothermal titration calorimetry (ITC). The trend in DFT calculated interaction energies with heparin fragments is consistent with the spectroscopic studies. Competitive inhibition of TAMRA-R9 internalization in human carcinoma (HCT116) cells along with studies in HCT116, wildtype CHO and mutant CHO-pgsA745 (lacking HS/CS) cells confirm that HSPG-mediated interactions play an important role in the cellular accumulation of PPCs.


Asunto(s)
Heparitina Sulfato/farmacología , Compuestos Organoplatinos/farmacología , Animales , Fondaparinux , Glucuronidasa/metabolismo , Células HCT116 , Proteoglicanos de Heparán Sulfato/farmacología , Heparina/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Oligosacáridos , Compuestos Organoplatinos/química , Polisacáridos/farmacología
2.
Angew Chem Int Ed Engl ; 53(16): 4098-101, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24643997

RESUMEN

Zn(2+) inhibits the action of several of the caspases and thus may act as a regulator of apoptosis. Reversal of this inhibition is one possible approach for the development of apoptosis-based therapies. Few studies describe the molecular details of the Zn(2+)-caspase interaction, the understanding of which is essential for the success of any therapeutic strategies. Enzyme kinetics and biophysical studies have shown that the inhibition is of mixed type with prominent (ca. 60 % of inhibition) uncompetitive characteristics and an IC50 of 0.8 µM under the conditions used. Fluorescence-based techniques confirmed that, during inhibition in the sub-micromolar range, substrate binding remains unaffected. A new zinc binding site composed of the catalytic histidine and a nearby methionine residue, rather than the catalytic histidine and cysteine dyad, is proposed based on the experimental observations. DFT models were used to demonstrate that the proposed site could be the preferred inhibitory zinc binding site.


Asunto(s)
Caspasa 3/metabolismo , Química Bioinorgánica/métodos , Zinc/química , Apoptosis , Sitios de Unión , Catálisis
3.
Protein Sci ; 28(12): 2036-2041, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31642127

RESUMEN

Computational design of new active sites has generally proceeded by geometrically defining interactions between the reaction transition state(s) and surrounding side-chain functional groups which maximize transition-state stabilization, and then searching for sites in protein scaffolds where the specified side-chain-transition-state interactions can be realized. A limitation of this approach is that the interactions between the side chains themselves are not constrained. An extensive connected hydrogen bond network involving the catalytic residues was observed in a designed retroaldolase following directed evolution. Such connected networks could increase catalytic activity by preorganizing active site residues in catalytically competent orientations, and enabling concerted interactions between side chains during catalysis, for example, proton shuffling. We developed a method for designing active sites in which the catalytic side chains, in addition to making interactions with the transition state, are also involved in extensive hydrogen bond networks. Because of the added constraint of hydrogen-bond connectivity between the catalytic side chains, to find solutions, a wider range of interactions between these side chains and the transition state must be considered. Our new method starts from a ChemDraw-like two-dimensional representation of the transition state with hydrogen-bond donors, acceptors, and covalent interaction sites indicated, and all placements of side-chain functional groups that make the indicated interactions with the transition state, and are fully connected in a single hydrogen-bond network are systematically enumerated. The RosettaMatch method can then be used to identify realizations of these fully-connected active sites in protein scaffolds. The method generates many fully-connected active site solutions for a set of model reactions that are promising starting points for the design of fully-preorganized enzyme catalysts.


Asunto(s)
Redes Neurales de la Computación , Proteínas/metabolismo , Sitios de Unión , Biocatálisis , Bases de Datos de Proteínas , Enlace de Hidrógeno , Modelos Moleculares , Proteínas/química
4.
Chem Sci ; 8(1): 241-252, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28451171

RESUMEN

Heparan sulfate is identified as a ligand receptor for polynuclear platinum anti-cancer agents through sulfate cluster binding. We present a new biological role for platinum and coordination compounds and a new target for metal-based drugs while presenting a new chemotype for heparanase and growth factor inhibition through modulation (metalloshielding) of their interactions. Masking of extracellular (ECM)-resident heparan sulfate (HS) through metalloshielding results in very effective inhibition of physiologically critical HS functions including enzyme (heparanase, HPSE) and protein growth factor recognition. The interaction of the highly cationic polynuclear platinum complexes (PPCs) with the highly sulfated pentasaccharide Fondaparinux (FPX, in this case as a model HS-like substrate) results in inhibition of its cleavage by the HS-related enzyme heparanase. Binding of the fibroblast growth factor FGF-2 to HS is also inhibited with consequences for downstream signalling events as measured by a reduction in accumulation of phospho-S6 ribosomal protein in human colon tumor HCT-116 cells. The end-point of inhibition of HPSE activity and growth factor growth factor signaling is the prevention of cell invasion and angiogenesis. Finally these events culminate in inhibition of HCT-116 cell invasion at sub-cytotoxic concentrations and the process of angiogenesis. A competition assay shows that Fondaparinux can sequester the 8+ TriplatinNC from bound DNA, emphasising the strength of PPC-HS interactions. Altering the profile of platinum agents from cytotoxic to anti-metastatic has profound implications for future directions in the development of platinum-based chemotherapeutics.

5.
Metallomics ; 6(12): 2230-41, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25329367

RESUMEN

The functional role assumed by zinc in proteins is closely tied to the variable dynamics around its coordination sphere arising by virtue of its flexibility in bonding. Modern experimental and computational methods allow the detection and study of previously unknown features of bonding between zinc and its ligands in protein environment. These discoveries are occurring just in time as novel biological functions of zinc, which involve rather unconventional coordination trends, are emerging. In this sense coordination sphere expansion of structural zinc sites, as observed in our previous experiments, is a novel phenomenon. Here we explore the electronic and structural requirements by simulating this phenomenon in structural zinc sites using DFT computations. For this purpose, we have chosen MPW1PW91 and a mixed basis set combination as the DFT method through benchmarking, because it accurately reproduces structural parameters of experimentally characterized zinc compounds. Using appropriate models, we show that the greater ionic character of zinc coordination would allow for coordination sphere expansion if the steric and electrostatic repulsions of the ligands are attenuated properly. Importantly, through the study of electronic and structural aspects of the models used, we arrive at a comprehensive bonding model, explaining the factors that influence coordination of zinc in proteins. The proposed model along with the existing knowledge would enhance our ability to predict zinc binding sites in proteins, which is today of growing importance given the predicted enormity of the zinc proteome.


Asunto(s)
Complejos de Coordinación/química , Proteínas/química , Zinc/química , Sitios de Unión , Complejos de Coordinación/metabolismo , Modelos Moleculares , Proteínas/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Zinc/metabolismo , Dedos de Zinc
6.
ChemMedChem ; 9(6): 1155-60, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24801050

RESUMEN

In an approach to design drugs with higher affinity for π-π stacking and electrostatic interactions with targeted biomolecules, complexes of the type [{cis-Pt(A)2 (L)}2 -µ-{trans-1,4-dach}](NO3 )4 ((A)2 =(NH3 )2 or ethylenediamine (en), L=quinoline (quin) or benzothiazole (bztz), dach=trans-1,4-diaminocyclohexane) were synthesized. The quinoline complex, [{cis-Pt(en)(quin)}2 -µ-(dach)](NO3 )4 (9) was synthesized from the precursor K[PtCl3 (quin)] (1), while the benzothiazole complexes, [{cis-Pt(A)2 (bztz)}2 -µ-(dach)](NO3 )4 ((A)2 =(NH3 )2 (10) and (A)2 =en (11)) were synthesized from the precursors cis-[Pt(A)2 Cl(bztz)] ((A)2 =(NH3 )2 (7) and (A)2 =en (8)). Their interactions with N-acetyltryptophan and a model pentapeptide (N-Ac-WLDSW-OH), modeled on the pentapeptide recognition sequence (FSDLW) of p53-mdm2 interaction, were examined by fluorescence spectroscopy. The dinuclear complexes were found to be significantly stronger at quenching the fluorescence of tryptophan than their mononuclear Pt-based analogues indicating stronger binding. Molecular modeling suggests a "sandwich" mode of binding, and the flexibility of the dinuclear motif can allow the design of more selective and stronger-binding complexes. Based on these results a further prototype, [{Pt(en)(9-EtGua)}2 µ-H2 N(CH2 )6 NH2 ](4+) , incorporating the purine 9-ethylguanine (9-EtG) as a stacking moiety, was prepared which showed good cytotoxicity in A2780 and OsACL tumor cell lines.


Asunto(s)
Complejos de Coordinación/química , Ligandos , Platino (Metal)/química , Secuencia de Aminoácidos , Benzotiazoles/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , Humanos , Cinética , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Quinolinas/química , Triptófano/análogos & derivados , Triptófano/química , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA